# Conditional Logistic Modelling for Adaptive Trials

Michael Dymock



#### AUSTRALIAN TRIALS METHODOLOGY

**CONFERENCE 2021** 

07-12-2021

Proudly supported by the people of Western Australia through Channel 7's Telethon



# Acknowledgements

- AusTriM Network: AusTriM Research Methods Grant Scheme
- Julie Marsh
- Katherine Lee
- Kaushala Jayawardana
- Robert Mahar





# Where don't adaptive trials work?

- When the time to endpoint is long relative to the recruitment period
- If most participants have been recruited before an interim analysis, then there is minimal future recruitment to inform
- Example: vaccine efficacy trials
  - high recruitment rate
  - long time to endpoint
  - long follow up period
- For these trials adaptive designs are typically avoided





# But what if it was different?

- How could an adaptive design be used in this context?
- If participants have follow-up observations before endpoint collection, could we model their endpoint conditional on these prior observations?





#### Set the scene

- Consider a two arm (control + intervention) trial with a binary endpoint (states 0/1 e.g., infection status)
- Assume the binary endpoint to be absorbing (in state 1)
- Participants have follow-up observations before the endpoint is collected
- We are interested in the probability that an individual will be in state
  1 at the time of endpoint collection





# Notation

- $\operatorname{Arm} j \in \{1,2\}$  for control and intervention
- Participant  $i \in \{1, ..., n_j\}$  on arm j
- Follow-up time  $t \in \{0, 1, ..., T\}$  (*T* is endpoint collection time)
- Binary observation  $y_{ijt} \in \{0,1\}$  ( $y_{ijT} \in \{0,1\}$  is the endpoint)





# Model

- We model the endpoint:  $Y_{ijT}$
- Parameters of interest:

$$Y_{ijT} \sim \text{Bern}(\pi_j)$$
  
 $\pi_j = P(Y_{ijT} = 1)$ 

Instead of estimating directly we will instead model the incremental probabilities:

$$\pi_{jt} = \mathsf{P}(Y_{ijt} = 1 | Y_{ij(t-1)} = 0, \dots, Y_{ij0} = 0)$$

- Probability that a participant transitions from state 0 to state 1 between follow-up observations t 1 and t
- Incremental model:  $Y_{ijt} = 1 | Y_{ij(t-1)} = 0, ..., Y_{ij0} = 0 \sim \text{Bern}(\pi_{jt})$





# Why?

- To reduce the time to decision making
- Potential to save resources in collection of follow-up data, unless entire cohort required full follow-up for safety data
- Gains come from incorporation of information at earlier follow-up observations
- We use this information to estimate the incremental parameters  $\pi_{jt}$
- There is a **deterministic relationship** between the incremental parameters  $\pi_{jt}$  and the parameters of interest  $\pi_j$
- These parameters can then recover the parameters of interest





# Deriving the relationship

1) 
$$P(Y_{ijt'} = 0 | Y_{ijt} = 1) = 0 \quad \forall t' > t$$
 (absorbing state)

2) 
$$\pi_{jt} = P(Y_{ijt} = 1 | Y_{ij(t-1)} = 0)$$
 (incremental parameters)

3) 
$$\gamma_{jt} = \mathsf{P}(Y_{ijt} = 0) = \prod_{\tau=0}^{t} (1 - \pi_{j\tau})$$

4)  $\pi_i = \sum_{t=1}^T \pi_{jt} \prod_{\tau=0}^{t-1} (1 - \pi_{j\tau})$ 

(intermediate derivation)

(deterministic relationship)

Ta Da!



# Vaccine trial example

- 5000 participants allocated 1:1 to two arms (  $j \in \{1,2\}$  )
- Infection status measured at 8 weeks and **12 weeks** ( $t \in \{0, 8, 12\}$ )
- Uniform recruitment over 26 weeks
- True probabilities  $\pi_1=0.05$  and  $\pi_2=0.03$
- Planned analyses at 14, 20, 26, 32
  and 38 weeks





#### Incremental parameter posteriors





#### Parameters of interest posteriors

| Parameter     | Mean   | 5%     | 95%    |
|---------------|--------|--------|--------|
| $\hat{\pi}_1$ | 0.0497 | 0.0446 | 0.0549 |
| $\hat{\pi}_2$ | 0.0304 | 0.0266 | 0.0346 |





## Simulation Study – No effect

#### Arm 1 Prob. = Arm 2 Prob. = 0.05

| Model       | Prop. Success* | Mean Sample Size |
|-------------|----------------|------------------|
| Standard    | 0.049          | 4901             |
| Conditional | 0.051          | 4899             |

|           | Standard | Conditional |
|-----------|----------|-------------|
| Interim 1 | 0.017    | 0.016       |
| Interim 2 | 0.011    | 0.012       |
| Interim 3 | 0.009    | 0.010       |
| Interim 4 | 0.007    | 0.009       |
| Interim 5 | 0.005    | 0.004       |

\*proportion of trials that declared Arm 2 superior to Arm 1 –type I error controlled at 5%





## Simulation Study – Small effect

#### Arm 1 Prob. = 0.05, Arm 2 Prob. = 0.03

| Model       | Prop. Success* | Mean Sample Size |
|-------------|----------------|------------------|
| Standard    | 0.942          | 3268             |
| Conditional | 0.950          | 3021             |

|           | Standard | Conditional |
|-----------|----------|-------------|
| Interim 1 | 0.123    | 0.205       |
| Interim 2 | 0.351    | 0.384       |
| Interim 3 | 0.252    | 0.215       |
| Interim 4 | 0.143    | 0.106       |
| Interim 5 | 0.073    | 0.040       |

\*proportion of trials that declared Arm 2 superior to Arm 1 – power





# Summary

- Adaptive trials struggle when the time to endpoint is long **relative** to the length of recruitment
- We can incorporate information from follow-up observations **prior** to the endpoint
- Model probability of state transition **conditional** on prior follow-ups
- Ability to **stop earlier** compared to standard methodology





## Appendix - Proof Derivation 3

$$\begin{split} \gamma_{jt} &= \mathsf{P}(Y_{it} = 0) \\ &= \mathsf{P}(Y_{ijt} = 0 | Y_{ij(t-1)} = 0) \mathsf{P}(Y_{ij(t-1)} = 0) + \mathsf{P}(Y_{ijt} = 0 | Y_{ij(t-1)} = 1) \mathsf{P}(Y_{ij(t-1)} = 1) \\ &= (1 - \pi_{jt}) \mathsf{P}(Y_{ij(t-1)} = 0) + (0) \mathsf{P}(Y_{ij(t-1)} = 1) \\ &= (1 - \pi_{jt}) \mathsf{P}(Y_{ij(t-1)} = 0) \\ &= (1 - \pi_{jt}) (1 - \pi_{j(t-1)}) \mathsf{P}(Y_{ij(t-2)} = 0) \\ &= \dots \\ &= (1 - \pi_{jt}) (1 - \pi_{j(t-1)}) (1 - \pi_{j(t-2)}) \dots \mathsf{P}(Y_{ij0} = 0) \\ &= (1 - \pi_{jt}) (1 - \pi_{j(t-1)}) (1 - \pi_{j(t-2)}) \dots (1 - \pi_{j0}) \\ &= \prod_{t=0}^{t} (1 - \pi_{j\tau}) \end{split}$$





## **Appendix - Proof Derivation 4**

$$\begin{aligned} \pi_{jt} &= \mathsf{P}(Y_{ijT} = 1) \\ &= \mathsf{P}(Y_{ijT} = 1 | Y_{ij(T-1)} = 0) \mathsf{P}(Y_{ij(T-1)} = 0) + \mathsf{P}(Y_{ijT} = 1 | Y_{ij(T-1)} = 1) \mathsf{P}(Y_{ij(T-1)} = 1) \\ &= \pi_{jT} \gamma_{j(T-1)} + (1) \mathsf{P}(Y_{ij(T-1)} = 1) \\ &= \pi_{jT} \gamma_{j(T-1)} + \pi_{j(T-1)} \gamma_{j(T-2)} + (1) \mathsf{P}(Y_{ij(T-2)} = 1) \\ &= \dots \\ &= \pi_{jT} \gamma_{j(T-1)} + \pi_{j(T-1)} \gamma_{j(T-2)} + \pi_{j(T-2)} \gamma_{j(T-3)} + \dots + \pi_{j1} \gamma_{j0} + (1) \mathsf{P}(Y_{ij0} = 1) \\ &= \sum_{t=1}^{T} \pi_{jt} \gamma_{j(t-1)} \\ &= \sum_{t=1}^{T} \pi_{jt} \gamma_{j(t-1)} \\ &= \sum_{t=1}^{T} \pi_{jt} \prod_{t=0}^{t-1} (1 - \pi_{j\tau}) \end{aligned}$$

