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Where don’t adaptive trials work?

– When the time to endpoint is long relative to the recruitment period
– If most participants have been recruited before an interim analysis,

then there is minimal future recruitment to inform
– Example: vaccine efficacy trials

• high recruitment rate
• long time to endpoint
• long follow up period

– For these trials adaptive designs are typically avoided



But what if it was different?

– How could an adaptive design be used in this context?
– If participants have follow-up observations before endpoint 

collection, could we model their endpoint conditional on these prior 
observations?

Randomisation Follow-up Endpoint Collection

Data



Set the scene

– Consider a two arm (control + intervention) trial with a binary 
endpoint (states 0/1 e.g., infection status)

– Assume the binary endpoint to be absorbing (in state 1)
– Participants have follow-up observations before the endpoint is 

collected
– We are interested in the probability that an individual will be in state 

1 at the time of endpoint collection



Notation

– Arm 𝑗𝑗 ∈ {1,2} for control and intervention
– Participant 𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑗𝑗} on arm 𝑗𝑗
– Follow-up time 𝑡𝑡 ∈ {0,1, … ,𝑇𝑇} (𝑇𝑇 is endpoint collection time)
– Binary observation 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} (𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇 ∈ {0,1} is the endpoint)



Model
– We model the endpoint: 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∼ Bern(𝜋𝜋𝑗𝑗)
– Parameters of interest: 𝜋𝜋𝑗𝑗 = P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1)
– Instead of estimating directly we will instead model the incremental

probabilities:
𝜋𝜋𝑗𝑗𝑗𝑗 = P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 0, … ,𝑌𝑌𝑖𝑖𝑖𝑖0 = 0)

– Probability that a participant transitions from state 0 to state 1 between 
follow-up observations 𝑡𝑡 − 1 and 𝑡𝑡

– Incremental model: 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 0, … ,𝑌𝑌𝑖𝑖𝑖𝑖0 = 0 ∼ Bern(𝜋𝜋𝑗𝑗𝑗𝑗)



Why?
– To reduce the time to decision making
– Potential to save resources in collection of follow-up data, unless 

entire cohort required full follow-up for safety data
– Gains come from incorporation of information at earlier follow-up 

observations
– We use this information to estimate the incremental parameters 𝜋𝜋𝑗𝑗𝑗𝑗
– There is a deterministic relationship between the incremental 

parameters 𝜋𝜋𝑗𝑗𝑗𝑗 and the parameters of interest 𝜋𝜋𝑗𝑗
– These parameters can then recover the parameters of interest



Deriving the relationship

1) P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖′ = 0|𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1) = 0 ∀𝑡𝑡′ > 𝑡𝑡 (absorbing state)

2) 𝜋𝜋𝑗𝑗𝑗𝑗 = P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 0) (incremental parameters)

3) 𝛾𝛾𝑗𝑗𝑗𝑗 = P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0) = ∏𝜏𝜏=0
𝑡𝑡 ( 1 − 𝜋𝜋𝑗𝑗𝑗𝑗) (intermediate derivation)

4) 𝜋𝜋𝑗𝑗 = ∑𝑡𝑡=1𝑇𝑇 𝜋𝜋𝑗𝑗𝑗𝑗 ∏𝜏𝜏=0
𝑡𝑡−1( 1 − 𝜋𝜋𝑗𝑗𝑗𝑗) (deterministic relationship)

Ta Da!



Vaccine trial example
– 5000 participants allocated 1:1 to 

two arms ( 𝑗𝑗 ∈ {1,2} )
– Infection status measured at 8 

weeks and 12 weeks                         
( 𝑡𝑡 ∈ {0, 8, 12} ) 

– Uniform recruitment over 26 
weeks

– True probabilities 𝜋𝜋1 = 0.05 and 
𝜋𝜋2 = 0.03

– Planned analyses at 14, 20, 26, 32 
and 38 weeks



Incremental parameter posteriors



Parameters of interest posteriors



Simulation Study – No effect

*proportion of trials that declared Arm 2 superior to Arm 1 –type I error controlled at 5%

Standard Conditional

Interim 1 0.017 0.016

Interim 2 0.011 0.012

Interim 3 0.009 0.010

Interim 4 0.007 0.009

Interim 5 0.005 0.004

Model Prop. Success* Mean Sample Size

Standard 0.049 4901

Conditional 0.051 4899

Arm 1 Prob. = Arm 2 Prob. = 0.05



Simulation Study – Small effect

*proportion of trials that declared Arm 2 superior to Arm 1 – power

Standard Conditional

Interim 1 0.123 0.205

Interim 2 0.351 0.384

Interim 3 0.252 0.215

Interim 4 0.143 0.106

Interim 5 0.073 0.040

Model Prop. Success* Mean Sample Size

Standard 0.942 3268

Conditional 0.950 3021

Arm 1 Prob. = 0.05, Arm 2 Prob. = 0.03



Summary

• Adaptive trials struggle when the time to endpoint is long relative to the 
length of recruitment

• We can incorporate information from follow-up observations prior to 
the endpoint

• Model probability of state transition conditional on prior follow-ups
• Ability to stop earlier compared to standard methodology



Appendix - Proof Derivation 3
𝛾𝛾𝑗𝑗𝑗𝑗 = P 𝑌𝑌𝑖𝑖𝑖𝑖 = 0

= P 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0 𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 0 P 𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 0 + P 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0 𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 1 P 𝑌𝑌𝑖𝑖𝑖𝑖 𝑡𝑡−1 = 1
= (1 − 𝜋𝜋𝑗𝑗𝑗𝑗)P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡−1) = 0) + (0)P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡−1) = 1)
= (1 − 𝜋𝜋𝑗𝑗𝑗𝑗)P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡−1) = 0)
= (1 − 𝜋𝜋𝑗𝑗𝑗𝑗)(1 − 𝜋𝜋𝑗𝑗(𝑡𝑡−1))P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡−2) = 0)
= …
= 1 − 𝜋𝜋𝑗𝑗𝑗𝑗 1 − 𝜋𝜋𝑗𝑗 𝑡𝑡−1 1 − 𝜋𝜋𝑗𝑗 𝑡𝑡−2 … P 𝑌𝑌𝑖𝑖𝑖𝑖0 = 0
= (1 − 𝜋𝜋𝑗𝑗𝑗𝑗)(1 − 𝜋𝜋𝑗𝑗(𝑡𝑡−1))(1 − 𝜋𝜋𝑗𝑗(𝑡𝑡−2)) … (1 − 𝜋𝜋𝑗𝑗0)
= ∏𝜏𝜏=0

𝑡𝑡 ( 1 − 𝜋𝜋𝑗𝑗𝑗𝑗)



Appendix - Proof Derivation 4
𝜋𝜋𝑗𝑗𝑗𝑗 = P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1)

= P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖(𝑇𝑇−1) = 0)P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑇𝑇−1) = 0) + P(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1|𝑌𝑌𝑖𝑖𝑖𝑖(𝑇𝑇−1) = 1)P(𝑌𝑌𝑖𝑖𝑖𝑖(𝑇𝑇−1) = 1)
= 𝜋𝜋𝑗𝑗𝑗𝑗𝛾𝛾𝑗𝑗(𝑇𝑇−1) + 1 P 𝑌𝑌𝑖𝑖𝑖𝑖 𝑇𝑇−1 = 1
= 𝜋𝜋𝑗𝑗𝑗𝑗𝛾𝛾𝑗𝑗(𝑇𝑇−1) + 𝜋𝜋𝑗𝑗(𝑇𝑇−1)𝛾𝛾𝑗𝑗(𝑇𝑇−2) + 1 P 𝑌𝑌𝑖𝑖𝑖𝑖 𝑇𝑇−2 = 1
= …
= 𝜋𝜋𝑗𝑗𝑗𝑗𝛾𝛾𝑗𝑗(𝑇𝑇−1) + 𝜋𝜋𝑗𝑗(𝑇𝑇−1)𝛾𝛾𝑗𝑗(𝑇𝑇−2) + 𝜋𝜋𝑗𝑗(𝑇𝑇−2)𝛾𝛾𝑗𝑗(𝑇𝑇−3) + ⋯+ 𝜋𝜋𝑗𝑗1𝛾𝛾𝑗𝑗0 + (1)P(𝑌𝑌𝑖𝑖𝑖𝑖0 = 1)

= �
𝑡𝑡=1

𝑇𝑇

𝜋𝜋𝑗𝑗𝑗𝑗 𝛾𝛾𝑗𝑗(𝑡𝑡−1)

= ∑𝑡𝑡=1𝑇𝑇 𝜋𝜋𝑗𝑗𝑗𝑗 ∏𝜏𝜏=0
𝑡𝑡−1( 1 − 𝜋𝜋𝑗𝑗𝑗𝑗)
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