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Applying causal inference and Bayesian
statistics to understanding vaccine safety
signals using a simulation study
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Community perception of vaccine safety influences vaccine uptake. Our objective was to assess
current vaccine safety monitoring by examining factors that may influence the availability of post-
vaccination survey data, and thereby the specificity and sensitivity of existing signal detection
methods.We used causal directed acyclic graphs (DAGs) and aBayesian posterior predictive analysis
(PPA) signal detection method to understand biological and behavioural factors which may influence
signal detection. The DAGs informed the data simulated for scenarios in which these factors were
varied. The influenceofbiological factors suchas severity of adverse reactions andbehavioural factors
such as healthcare-seeking behaviour upon survey participation was found to drive signal detection.
Where there was a low prevalence of moderate to severe reactions, false signals were detected when
there was a strong influence of reaction severity on both survey participation and seeking medical
attention. These findings provide implications for future vaccine safety monitoring.

Routinely administered vaccines are safe, but mild reactions are common
and serious reactions occasionally occur, even for vaccines with otherwise
excellent safety profiles. In 2010, an influenza vaccine formulation was
associated with an increased risk of febrile convulsions in Australian chil-
dren under 5 years old1; this led to the discontinued use of the particular
formulation in children, but not before a temporary suspension of all
influenza vaccination in young children, affecting public confidence in
childhood immunisation, which reduced vaccine coverage2. Low vaccine
coverage increases the risk of infections caused by vaccine preventable
diseases3. There is an ongoing need tomonitor, detect and address potential
vaccine safety issues as soon as possible after they emerge, which is essential
to public confidence in vaccination.

Monitoring can be performed for either solicited (active) or unsolicited
(passive) reports of adverse events following immunisation (AEFI), which
are undesirable clinical events occurring after the administration of a vac-
cine, irrespective of whether any causal relationship with the vaccine exists4.
AEFI are gradedaccording to their severity5 ranging frommildAEFI that do
not interfere with a person’s activity to severe AEFI preventing normal
activity and/or requiring medical attention. Australia’s active vaccine safety
surveillance systemAusVaxSafetymonitors the frequency of solicited acute
AEFI for vaccines delivered through the national immunisation

programme6. Since 2014, data have been collected through AEFI surveys
sent to vaccine recipients via SMS or email 3 days after vaccination. Reports
of seekingmedical adviceor attentionare taken tobe an indicator of severity,
although healthcare seeking may also be influenced by vaccine concerns
raised in themedia andotherprocedural factors.The rate of survey-reported
medically attended AEFI is monitored to identify potentially important
vaccine safety issues that might require the suspension of a vaccine pro-
gramme pending detailed investigation. In 2021, AEFI surveillance for the
newly developed and rapidly deployed Coronavirus 2019 (COVID-19)
vaccines required an extension of the AusVaxSafety post-vaccination sur-
veys, including reports of any medical care or medical advice sought
(attendance at a primary care clinic or emergency department or telehealth
advice), the impact of reported AEFI on daily activities, and the presence of
underlying health conditions7.

A vaccine ‘safety signal’ is an unexpected (or unexpectedly frequent)
association between a specific AEFI and a specific vaccine which requires
investigation into whether a clinically important causal relationship exists8.
To detect safety signals, AusVaxSafety employs a posterior predictive ana-
lysis (PPA) method; the PPA method is based on the posterior predicted
distribution from a Bayesian logistic model adjusted for age, sex and co-
morbidities9. The PPA method depends upon solicited reports of medical
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attentions (MAs); this, in turn, depends on survey participation which can
vary across demographic groups and over time, leading to variable response
rates. For example, over the 1st year of the Australian COVID-19 vaccine
programme, the survey response rate declined from ~70% to 30%
(unpublished data).

The challenge of vaccine safety monitoring is to identify sensitive and
timely safety signals that unveil true vaccine safety issues, while minimising
the frequency of false detections. To do this, survey-based vaccine safety
monitoring systems must correctly interpret AEFI data from the subset of
responders that exhibits non-randommissingness. For example, responder
rates differ between age and sex, and potentially between those who
experience an AEFI and those who do not. Structured patterns of missing
data may occur when vaccines are rolled out at different times to selected
higher risk or specific age groups. A limitation of routine analytic approa-
ches is the failure toproperly account for these patterns ofmissingness in the
data. Causal directed acyclic graphs (DAGs) are increasingly used to model
data-generating processes in applied health research10. Causal DAGs depict
and communicate one’s understanding of complex problem domains or
hypotheses, which can subsequently guide the analysis and modelling
assumptions11. For example, behavioural researchers have applied causal
and statistical modelling techniques to understand the generalisability of
samples for cross-cultural comparison12. In order to correctly infer the true
AEFI rates among the vaccinated population from the survey responder
data and thereby improve the sensitivity and specificity of signal detection
methods, some insight is required into the frequency of AEFI among survey
non-responders.

In this paper, we approached this problem using causal DAGs created
through expert elicitation to derive an assumed data-generating process,
fromwhichwe simulatedAusVaxSafety survey data collected under a range
of scenarios. The synthetic scenarios modelled a range of biological and
behavioural factors that plausibly influence the frequency of actual and
reported MA following immunisation. We applied the PPA method to the
simulated data under these scenarios and assessed its performance in flag-
ging a safety signal forMA in survey responders in relation to the true rate of
MA in both survey responders and non-responders in the simulated data.
Using these methods, we quantified how changes in important biological
and behavioural factors could influence the reporting ofMAs and affect the

performance of signal detection using the PPAmethod. Our chief objective
was to assess themonitoring of vaccine safety byfirst understanding someof
the factors affecting the sensitivity and specificity of existing signal detection
methods.We obtained insights into the value of the causal DAG to account
for survey non-response, to guide understanding of short-term vaccine
safety, interpret the results of the PPA analysis under plausible scenarios,
and review implications for future vaccine safety monitoring.

Results
Causal models
Figure 1 presents the full DAGwhich consists of 37 variables. Nine variables
(blue nodes) depict the background risk factors for vaccine recipients. Six
variables (green nodes) depict key events initiated in the health system (e.g.,
the distribution of vaccines). The spectrum of expected AEFI is depicted by
seven variables (pink nodes), varying in expected frequency from common
to rare (e.g., 16% for fever13 and 2.7 events out of 100,000 persons for chest
pain14, following vaccination with BNT162b2). Background variables and
AEFI togetherdrive the vaccine recipient’s perceived seriousness of anAEFI,
which subsequently drives one’s overall level of concern regarding anAEFI.
The level of concern can be further influenced by a recipient’s demographic
background, which vaccine they received, and any contemporary factors
that increase community concerns about vaccination in general, or the
particular vaccine (e.g., news about vaccine safety issues). The AEFI, its
perceived seriousness, and the recipient’s level of concern, together drive the
recipient’s actions including whether they seek medical attention and/or
report the AEFI if surveyed. There are 11 actions (purple nodes) and 2
temporary factors (yellow nodes) modelled in the full DAG to illustrate the
problem domain. See Supplementary Table 1 for the definition of each
variable and a detailed description of the DAG structure. At a high level,
there are three main processes that collectively culminate in the ascertain-
ment of an MA report: (1) the vaccine reaction (biological process), (2) the
seeking of medical attention (behavioural process), and (3) the data capture
process (procedural process). There are many potential interactions among
these processes. The key variables extracted to form the simplifiedDAG are
highlighted in blue text.

The simplified DAG (Fig. 2) contains the key variables that we con-
sidered to adequately capture the full causal model for the purpose of

Fig. 1 | The full DAG.The figure depicts how theAusVaxSafety active surveillance system for short-termAEFImonitoring operates as a complex system. See Supplementary
Table 1 for the definition of each variable and a detailed description of the DAG structure.
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subsequent investigations, namely the person’s age at vaccination (age),
vaccine received (vaccine), whether they experience reaction within 3 days
following vaccination (reaction), whether they seekmedical attention (MA),
whether they respond to, or participate in the survey (survey participation),
and whether they report seeking medical attention (report MA). These
represent a minimum set of variables required to investigate how distinct
survey response behaviour in subgroups (e.g., different age groups) can
interact with the underlying biological process of interest (vaccine reaction,
MA) to affect the sensitivity and specificityof thePPAmethodwhenapplied
to observational data (reporting MA via survey participation). In the next
section ‘Data simulation and scenario design’, we describe the design and
underlying rationale for each scenario and the assumed data generation
process. We assumed that the method of survey collection is constant and
external influences are time invariant.

Data simulation and scenario design
We simulated the five variables represented in the simplified DAG using
eight parameters as defined in Table 1. The vaccine variable was not
explicitly included in the statistical model as a single type of hypothetical
vaccine was considered. For survey responders, only age and reported MA
can be observed and the other factors are not observed. In the simulations,
these parameters and their values were chosen based on several key
assumptions. In brief, we assumed that the more severe an AEFI, the more
likely a person is to seek medical attention and to respond to the survey.
Compared to older people, younger people are assumed to bemore likely to
have a moderate or severe reaction13,15, but less likely to respond to a health
survey16,17, and less likely to seek medical attention if they experience an
AEFI18. We sampled age from a truncated Gaussian distribution with a
mean of 43.5 years and a standard deviation of 18.6 years, informed by the
age distribution of vaccine recipients observed by AusVaxSafety during
the COVID-19 vaccine roll out in Australia. Table 1 defines variables in the
simplifiedDAG,withparameters designed to generate data for each variable
using Monte Carlo methods. Parameter values are chosen to describe a
scenario for a relatively low prevalence of moderate to severe reaction, low
survey participation and a weak influence ofmoderate to severe reaction on
both survey participation andMA.We subsequently used this as aReference
Scenario for PPA investigation. See Supplementary Table 3 for further
details about how these parameters were used to generate the event prob-
abilities in the data simulations, including the probability of a participant
reporting MA.

To facilitate the investigation of how combinations of these factors
influence signal detection, we simulated data for the Reference Scenario
consisting of 50,000 hypothetical vaccine recipients representing accumu-
lated safety data to date, and 12 Investigation Scenarios consisting of 4000
hypothetical vaccine recipients representing a typical number of surveys
issued to vaccine recipients in a 2-week investigationperiod. In contrastwith
the Reference Scenario of a relatively low probability of moderate to severe
reaction (Low R), low survey participation (Low P), and a weak influence of
reaction on survey participation and MA (Weak), we altered the value of
four parameters outlined in Table 2 for each Investigation Scenario. These
include the probability of moderate to severe reaction (θ) from a relatively
low (Scenarios 1–6, Low R) to a relatively high (Scenarios 7–12, High R)
arbitrarily, in other words, under theHigh R Scenarios there’s a true change
in the biological process compared with the Reference Scenario, i.e., a true
increase in the riskofmoderate to severe reactionasmayplausibly occur due
to a manufacturing issue with a particular vaccine batch. We varied the

Fig. 2 | The simplifiedDAG.The figure depicts the relationship of aminimum set of
variables required to investigate how biological, behavioural and procedural pro-
cesses can interact to influence the probability of a reportedMA using PPAmethod.
See Table 1 for the definition of each variable and see Supplementary Information:
Section A for how each variable is aligned with the full DAG.

Table 1 | Simplified DAG variables and data simulation parameters

Variable Definition States

Age Age of vaccine recipient monitored for safety by an active surveillance system <50 y, ≥ 50 y

Vaccine Vaccine received at 3 days before the survey distribution Yes

Reaction The level of reaction within 3 days following the vaccination. This is often not directly observed and thus
different from reported AEFI

None to mild (0), moderate to
severe (1)

Survey participation The recipient participated in the survey sent at day 3 following their vaccination at an AusVaxSafety site No (0), yes (1)

MA The recipient experienced a reaction within 3 days of vaccination and sought medical attention either via a
general practitioner (GP) or hospital emergency department (ED)

No (0), yes (1)

Report MA The recipient reported MA (GP and/or ED) via AEFI survey No (0), yes (1)

Parameter Definition Value

θ Probability of moderate to severe reaction in the <50 y age group 0.3

ϵ Multiplicative change of probability of moderate to severe reaction in the ≥50 y age group 2
3

η Probability of survey participation in the <50 y age group with a mild reaction 0.1

τsp Multiplicative change of survey participation due to a moderate to severe reaction independent of age group 1.5

µsp Multiplicative changeof survey participation in the≥50 y agegroup independent ofmoderate to severe reaction 1.35

ϕ Probability of MA in the <50 y age group with a mild reaction 0.01

τma Multiplicative change in MA probability due to a moderate to severe reaction independent of age group 3

µma Multiplicative change in MA probability in the ≥50 y age group independent of severity of reaction 5
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probability of survey participation (η) representing a change in the beha-
viour of vaccine recipients (MediumP for Scenarios 2, 5, 8, 11 andHighP for
Scenarios 3, 6, 9, 12). Finally, we varied the influence of reaction on both the
probability of survey participation (τsp) and the probability of MA (τma)
(Strong influence for Scenarios 4–6, 10–12).

PPA investigation
We paired the Reference Scenario with each Investigation Scenario, and
assessed how likely the PPA method is likely to detect a signal under each
Investigation Scenario. We inspected the diagnostics, using the summary
function in the cmdstanr package in R, for the first 5 simulations for each of

the 12 scenarios.All R-hat convergencediagnostic valueswere<1.01 and the
bulk and expected sample sizeswere sufficiently large (>1300). Therewas no
evidence of nonconvergence of any chain.We present a histogram of where
each simulation’s number of MAs under the Investigation Scenario sits as a
percentile of the predicted probability distribution in Figs. 3 and 4. We also
presented here the percentage of simulations that generated a signal for each
scenario by age group in light blue and dark blue text.

Figure 3 consists of the six LowR Investigation Scenarioswhere there is
no change in the biological processes of interest compared with the Refer-
ence Scenario, and Fig. 4 consists of those High R Investigation Scenarios
where there is an increase compared with the Reference Scenario. It is
desirable for the PPA signal detection method to generate a safety signal in
investigation scenarios that are set with a high prevalence (probability) of
moderate to severe reaction (Fig. 4) and not to generate a signal in scenarios
set with a low prevalence ofmoderate to severe reaction (Fig. 3). Any signals
generated in simulations of high and low prevalence of reaction scenarios
were therefore considered to be appropriate and inappropriate, respectively.

In Low R Scenarios (Fig. 3), signals were more likely to be inappro-
priately generated in the older age groupwhen the influence of reactions on
survey participation andMAwas strong (27–78% of simulations, Scenarios
4–6). This is because the inflatedproportionof reportedMA ismore likely to
be detected when the number of survey participants increases due to
increasing survey participation and healthcare-seeking behaviour. This
same analogy applies to the relatively High R Scenarios (Scenarios 10–12).
The variation in the proportion of signals detected across the scenarios is
due to a combination of the precision of the posterior predictive distribution
andmagnitude of the bias, both related to the survey participation rate. Bias
in the estimate of reported MA in the Strong Influence Scenarios (Scenarios
4–6 and 10–12) is greatest when the survey participation is low, but the
precision of the posterior predictive distribution will also be lower. The
absolute inflation in the proportion of respondents who report MA was
higher in the older age group compared to the younger age group across all
scenarios. For the younger age group, only a low proportion of simulations
resulted in an inappropriate signal generation (0–4% of simulations).

In High R Scenarios, the probability of appropriate signal generation
was lower (1–62%of simulations) in the younger age group, and in the older

Table 2 | Definition of investigation scenarios

Scenario Scenario specification Parameter values θ, η,
(τsp, τma)

Reference Low R, Low P, Weak 0.30, 0.1, (1.5, 3)

1 Low R, Low P, Weak 0.30, 0.1, (1.5, 3)

2 Low R, Medium P, Weak 0.30, 0.3, (1.5, 3)

3 Low R, High P, Weak 0.30, 0.4, (1.5, 3)

4 Low R, Low P, Strong 0.30, 0.1, (1.8, 5)

5 Low R, Medium P, Strong 0.30, 0.3, (1.8, 5)

6 Low R, High P, Strong 0.30, 0.4, (1.8, 5)

7 High R, Low P, Weak 0.60, 0.1, (1.5, 3)

8 High R, Medium P, Weak 0.60, 0.3, (1.5, 3)

9 High R, High P, Weak 0.60, 0.4, (1.5, 3)

10 High R, Low P, Strong 0.60, 0.1, (1.8, 5)

11 High R, Medium P, Strong 0.60, 0.3, (1.8, 5)

12 High R, High P, Strong 0.60, 0.4, (1.8, 5)

Scenarios vary with probability of moderate to severe reaction (Low or High R), probability of survey
participation (Low, Medium or High P) and influence of moderate to severe reaction on the
probability of survey participation and the probability of MA (Weak, Strong).

Fig. 3 | Low probability of moderate to severe
reaction in investigation scenarios, no change
compared to the reference scenario. Signals are
flagged when the number of MAs exceeds the 99th
percentile (dotted lines) upon 5000 simulations with
4000 individuals simulated for each simulation per
scenario. The proportion of simulations which
generated a signal within each scenario is repre-
sented as percentages within each panel in this fig-
ure. The probability of survey participation (η) was
varied from Low P (Scenarios 1, 4) toMedium P
(Scenarios 2, 5) and High P (Scenarios 3, 6). The
influence of reaction (τsp and τma) on both survey
participation and MA respectively was varied
between Weak for Scenarios 1–3 and Strong for
Scenarios 4–6. The exact parameters altered for each
scenario are as specified in Table 2, all other para-
meters used are as specified in Table 1.
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age group when the influence of reactions on survey participation and MA
was weak (12–43% of simulations).

Discussion
Key challenges to vaccine safetymonitoring are the low prevalence of AEFI,
the relatively large number of vaccine recipients required to respond to
safety surveys to ensure adequate sensitivity of the detection methods and
the absence of information from vaccine recipients who are survey non-
responders. There is also a need to balance sensitive signal detection
methods, that detect true vaccine safety issues in a timely manner, against
the frequency of false detections. To understand this problem and thereby
improve current signal detection methodology, we combined causal
methods and statistical modelling, and used simulation to investigate how
AEFI signal detection may be affected by plausible biological and beha-
vioural factors.

We used the novel PPA methodology, which is based on a Bayesian
logistic model of the probability of reporting medical attendance following
anAEFI. In brief, a PPAsignal is generated by theAusVaxSafetymonitoring
systemwhen the number of reportedMAs forAEFI (for a specified vaccine)
exceeds a threshold based on historically observed rates and the number of
respondents in the current reporting period, adjusted for age. There are two
key reasons why a signalmight occur. First, theremight be a true increase in
AEFI in the vaccinated population (i.e., the biological process of interest)
which is reflected in increased reports of MA in the surveyed population.
Second, in the absence of a true increase in AEFI, the survey respondents
might be enrichedwith a subset of a populationwhose rate of reportingMA
is higher; this could be due to changes in behaviour (such as media reports)

and/or procedural processes (such as an age-related roll out of a vaccine)
and independent of any change in the biological processes. This possibility
adds to the practical challenge of detecting a true increase in AEFI andmay
trigger time-consuming case-series investigations by public health
researchers.

A desirable safety signal detection system should be sensitive to
changes in the true prevalence of severe vaccine reactions, whilst mini-
mising false signals due to variation in behavioural or procedural factors
that might affect reporting. These include the survey participation rate
and the influence of reaction severity on the propensity to participate in
the survey or to seek medical attention; we found evidence that our safety
method could be sensitive to both factors. For High R Investigation Sce-
narios (Fig. 4), signals failed to be generated in the younger age group if
either the influence of reactions on survey participation andMAwasweak
or surveyparticipationwas low. For theolder age group,when the reaction
prevalence was high, signals were detected for low survey participation if
the influence of reactions on survey participation and MA was strong.
Conversely, in Low R Investigation Scenarios (Fig. 3), inappropriate sig-
nals can occur when there is a strong influence of reaction severity on
survey participation andMA, especially when survey participation is high.
We observed bias in the estimate of reported MA in the Strong Influence
Scenarios (4–6 and 10–12) where there is a variation in the proportion of
signals detected across the scenarios due to a combination of the precision
of the posterior predictive distribution and magnitude of the bias, both
related to the survey participation rate. An inflation of inappropriate or
false signal detection may have a subsequent effect on investigative
resources.

Fig. 4 | High probability of moderate to severe
reaction in investigation scenarios, increase in
biological processes compared to the reference
scenario. Signals are flagged when the number of
MAs exceeds the 99th percentile (dotted lines) upon
5000 simulations with 4000 individuals simulated
for each simulation per scenario. The proportion of
simulations which generated a signal within each
scenario is represented as percentages within each
panel in this figure. The probability of survey par-
ticipation (η) was varied from Low P (Scenarios 7,
10) toMedium P (Scenarios 8, 11) and High P (Sce-
narios 9, 12). The influence of reaction (τsp and τma)
on both survey participation and MA, respectively,
was varied between Weak for Scenarios 7–9 and
Strong for Scenarios 10–12. The exact parameters
altered for each scenario are as specified in Table 2,
all other parameters used are as specified in Table 1.
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Inspection of the causal DAG (Fig. 2), which underpinned the data
generation for this simulation study, partially explains the sensitivity of the
signal detectionmethod to changes in these behavioural factors. In essence,
we wish to use data on reported MAs to make indirect inference about the
(possibly changing) causal effect of vaccination on the prevalence of severe
reactions. Severe reactions are only ascertained as reported medical atten-
dances, which are conditionally dependent on both medical attendance
occurring and survey participation. Independent of the influence of reaction
severity, the probability of an MA is plausibly influenced by age and other
participant characteristics. While the age of vaccine recipients can be
measured and conditioned upon, these other factors are mostly unknown,
unmeasured, and will, therefore, confound attempts to attribute any
changes inMA to changes in the reactogenicity of the vaccine. Furthermore,
changes in survey participation rates will also influence the rate of reported
MA, independent of any true increase inMA. If these changes are driven by
factors other than changes in the age distribution of vaccine recipients, there
is a risk those factors will further confound the attribution of changes in
reported MAs to changes in vaccine reactogenicity. Systematically mon-
itoring survey response rates and survey participation behaviour might be
used to determine the significance of an alerted signal and to improve the
sensitivity of signal detection. When a signal has been alerted, it may be
important to assess whether this can be explained by changes in survey
participation behaviour, and thismay inform the public health investigation
and interpretation of the signal, e.g., a signal alerted in the context of con-
sistently high survey participation may have a greater significance than a
signal alerted in the context of varying survey participation behaviour.

The PPA signal detection method is also sensitive to the quantity of
data available at each analysis, especially at the start of a new surveillance
period, such as the annual roll out of influenza vaccines. Low rates of survey
participation reduce the quantity of data available to inform the parameters
of the statistical model, and therefore the precision of the expected (pre-
dicted) number of MA in the surveillance period. As a result, even a
moderately high frequency of reported MAs caused by a true increase in
reactogenicity will be compatible with the statistical model and may not
exceed the threshold for signal detection even when the risk of moderate to
severe reactions is high. Therefore, it is desirable to increase survey parti-
cipation by vaccine recipients, which requires promotion by immunisation
providers at the time of vaccination.

The use of causal DAGs was informative for our study in several ways.
The full DAG (Fig. 1) depicts the problem domain of vaccine safety mon-
itoring and thus facilitates communication among people from disparate
disciplines, including medical experts, public health practitioners and sta-
tisticians. It provided a commonstartingpoint for simplificationof theDAG
and elicitation of the parameters and scenarios necessary for the data gen-
eration process. This is a necessary simplification of the real world but
captures the important components of the complex target problemdomain.
The full DAG also serves as a knowledge base, which can support investi-
gations of future research questions. From a modelling perspective, how
simplification should bemade is driven by the purpose ofmodelling. In our
case, the six variables included in the simplified DAG sufficiently enabled
the investigation of our research question of interest. We showed, by
simulation, how changes in non-biological factors might affect active sur-
veillance, thus leading to a distorted interpretation of the biological process
in the vaccinated population. Such simulations revealed how signal detec-
tion methods can be influenced by behavioural and procedural factors that
affect survey participation and response, but which cannot be gleaned from
the survey data alone.However, the simplifiedDAGpresented heremaynot
be sufficient to answer how vaccine signals should be interpreted under a
specific real-world implementation scenario, where other important factors
(other than age) that influence survey participation and seekingMA should
also be taken into consideration. It is essential to be clear about the purpose
of creating a causal DAG or any model.

There are limitations to our simulation study. For simplicity, the only
variable included in the PPA method was age, although other factors are
known to drive biological, behavioural and procedural processes and thus

affect how a detected signal should be interpreted. The AusVaxSafety PPA
model is more complex and accounts for gender, ethnicity, jurisdiction and
co-morbidities, in addition to the age of the vaccine recipient. We chose to
simulate age from a Gaussian distribution reflecting a plausible age dis-
tribution observed in AusVaxSafety. We appreciate the importance of
considering realistic age distributions when applying the proposed method
in our study to real-world scenarios, especially how such distributions can
shift over time. We conducted our simulation study over two age groups
(below 50 years or 50+ years), when in reality, biological and behavioural
factors may have differential effects across the age range. Incorporating
more appropriate PPA models (including factors such as gender and eth-
nicity, and greater granularity in the age groups) and amore complex causal
DAGaspart of a simulation study to further explore the effectof behavioural
factors in vaccine safety surveillance would be of interest. Here we focused
on the effect of differential survey responses among those who attend
participating immunisation clinics. However, people attending participat-
ing immunisation clinics may be systematically different from those
attending other immunisation services (e.g., in remote clinics or parent
report from childhood immunisation services). These differences may, in
turn, affect survey response and healthcare-seeking behaviours so reported
AEFI rates may be over or underestimated. The current full DAG can be
extended to depict this potential selection bias and reflect how the surveyed
and responder population relates to the complete vaccinated population.
While this may not impact the operating characteristics of our signal
detection methods, future work could account for this potential selection
bias in AEFI rate estimation by including the type of clinic in the statistical
model. Finally, we did not differentiate between seeking phone advice for
AEFI versus GP or hospital attendance, nor did we consider detection via
passive (spontaneously volunteered) rather than active (solicited) AEFI
reports. Greater granularity for these factors may be incorporated into
futuremodels for abetter understandingof the impact of behavioural factors
on vaccine safety surveillance.

Methods
The scientific causal models
ADAG consists of nodes that represent random variables that may or may
not be observed (in the form of data), and arrows (arcs) that indicate a
possible direct influence of predecessor (or parent) variables on their child
nodes (nodes extending from other nodes). A causal DAG is one in which
the arcs are intended to represent influences that are causal and not just
associative. In this study, the purpose of creating the causal DAGs was to
represent how the AusVaxSafety active surveillance system for short-term
AEFI monitoring operates as a complex system (the full DAG). It addresses
how this complexity may affect the reporting of AEFI, especially MA, and
how this may, in turn, influence the detection of safety signals. Using a
previously published causal knowledge engineering process19, the DAGs
were drafted, refined and applied for the stated purpose. Domain experts
were consulted to advise on the selection of relevant variables, the causal
structure and the face validity of the final DAGs. The domain experts were
public health practitioners, clinical vaccinologists, programme managers
familiar with AusVaxSafety’s data capture processes, and statisticians
responsible for the analysis of the survey data and reporting of vaccine safety
signals. From the full DAG, we extracted a simplifiedDAG, which preserved
all causal assumptions from the full DAG. The purpose of this simplified
DAGwas to facilitate the investigation of our researchquestion of interest—
how distinct survey responding behaviour in subgroups (such as different
age groups) can interact with the underlying biological process of interest
(vaccine reaction) to affect the sensitivity and specificity of existing signal
detection methodologies.

Data simulation and scenarios
To explore factors that influence signal detection via statistical analysis, we
used all variables in the simplified DAG to generate complete data (i.e.,
withoutmissingness) relevant to the problemdomain, including for vaccine
recipients who respond to the survey (observed) and those who do not.
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Binary discrete variables were sampled from Bernoulli distributions. Age
was sampled froma truncatedGaussian distribution forwhich the statistical
parameters were chosen to reflect reasonable and plausible age ranges of
individuals who had received post-vaccination safety surveys. Age was then
categorised as ‘below 50 years old’ and ‘50 years old and above’. Guided by
the causal DAGs, we designed hypothetical investigation scenarios of sci-
entific interest that reflect potential variations in biological, behavioural and
procedural assumptions, which may lead to distinct patterns of the
reporting of MA. For each scenario, we generated 5000 simulations to
investigate the operating characteristics of the statistical signal detection
method.

The statistical signal detection method
We were interested in how a safety signal may be generated under each
hypothetical scenario of interest using the PPAmethod. The PPAmethod
identifies a signal when the number of reported MAs in an investigation
period exceeds a threshold. This threshold was defined as the 99th per-
centile of the posterior predictive distribution for the number of reported
MAs under a Bayesian statistical model. The parameters of this Bayesian
statistical model were informed by (historic) reference data and are reg-
ularly updated using survey data (as illustrated in Fig. 5). We summarise
the simulations for each investigation scenario in four ways: (1) the mean
number of reported MAs, (2) the mean threshold value (from the pos-
terior predictive distribution for the number of MAs), (3) the mean per-
centile of the number of reported MAs of the posterior predicted
distribution (as an indication of how closely themean number of reported
MAs approaches the mean signal threshold), and (4) the proportion of
simulations where the number of reported MAs exceeds the signal
threshold, i.e., the proportion of simulations in which a signal has been
generated. This is illustrated in Fig. 5.

We considered a simplified version of the PPA consistent with our
simplified DAG with only one explanatory variable, age, categorised into
<50years old (denoted as g = 0) and≥50years old (i.e., g = 1).Thenumberof
MAs was modelled as arising from a Binomial distribution:

yg ∼Binomialðng ; pg Þ1

where:
yg = number of reported MAs in age group g
ng = number of survey responses for age group g
pg = probability of anMAbeing reported among survey responders for

age group g
The linear predictor is:

logitðng ; pg Þ ¼ αþ 1 g¼1½ �β ð2Þ

where:
α = log-odds of an individual <50 years old reporting an MA
β = log-odds ratio of an individual≥50 years old compared to<50years

old reporting an MA
(a) Under 50 years of age (b) 50 years of age or older
The model parameters were given the following weakly informative

priors9:

α∼Normalð�4; 22Þ ð3Þ

β∼Normalð0; 1Þ

The prior distribution for α induces a 95% credible interval between
~0% and 48% for the probability of an individual <50 years old reporting an
MA. The prior distribution for β translates as a wide range of odds ratios
avoiding extreme values of exp(−3) = 0.05 and exp(3) = 20.09, i.e., within
three standard deviations about themean.We usedGeNIe software to build
and depict the DAGs presented here, Academic Version 4.1.4016.020. All
simulations and analytical programmingwere conducted in Stan21 (Version
0.6.1) via the cmdstanR package22 in the R statistical programming language
v4.2.223. Posterior distributions were estimated via Markov-chain Monte
Carlo (MCMC)using Stan’sHamiltonianMonteCarlo algorithmwith eight
MCMC chains, run in parallel, with warm-up and sampling phases each
running for 1000 iterations.

Data availability
The datasets generated and analysed during the current study are available
in the GitHub repository: www.github.com/ECSTay/AVSCausalModel.

Code availability
The underlying code for this study is available in GitHub and can be
accessed via this link: www.github.com/ECSTay/AVSCausalModel.
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