
Dymock et al. Trials          (2025) 26:256  
https://doi.org/10.1186/s13063-025-08965-w

UPDATE Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Trials

Bringing optimised COVID‑19 vaccine 
schedules to immunocompromised 
populations: statistical elements and design
Michael Dymock1,2*   , James H. McMahon3,4,5, David Griffin3,5, Michelle Hagenauer3,5, Tom L. Snelling6, 
Julie A. Marsh1,7 and On behalf of the BOOST-IC Investigator Team 

Abstract 

Bringing optimised coronavirus disease 2019 (COVID-19) vaccine schedules to immunocompromised popula-
tions (BOOST-IC) is a multi-site, adaptive platform trial designed to assess the effect of different booster vaccination 
schedules in the Australian immunocompromised population on the immunogenicity, safety and cross-protection 
against COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Par-
ticipants from one of three immunocompromised subpopulations (people living with human immunodeficiency 
virus, solid organ transplants or haematological malignancies) are randomised to receive a one- or two-dose booster 
vaccination schedule using one of three COVID-19 vaccine brands (Pfizer, Moderna or Novavax) available in Australia. 
The primary endpoint is the SARS-CoV-2 anti-spike immunoglobulin G concentration at 28 days after the final dose 
of study vaccine and is modelled using a Bayesian hierarchical two-part model, anticipating that a significant propor-
tion of responses may be below the limit of assay detection. We describe the structure and objectives of the BOOST-IC 
trial and how these are mathematically represented, modelled and reported, including specification of the estimands, 
statistical models and decision criteria for trial adaptations. This paper should be read in conjunction with the BOOST-
IC study protocol. BOOST-IC was registered on 27 September 2022 with the Australian and New Zealand Clinical Trials 
Registry NCT05556720.
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Introduction
Immunocompromised populations continue to be dis-
proportionately impacted by the coronavirus disease 
of 2019 (COVID-19) pandemic, caused by severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) [1]. 
In these populations, there is still uncertainty around 
the optimal strategies for COVID-19 booster vaccina-
tion, including how vaccination impacts key elements of 
immunity, and how these immune responses correlate 
with protection against infection and disease in different 
populations, especially against future variants of concern 
(VoC) [2–5].

Platform trial designs, such as the platform trial in 
COVID-19 priming and boosting (PICOBOO), are being 
increasingly used to generate evidence for COVID-19 
prevention and treatment strategies [6, 7]. Platform 
designs are more flexible and can be more resource 
efficient than conventional fixed designs because they 
address multiple research questions in parallel and incor-
porate pre-specified trial adaptations such as stopping 
recruitment early for superiority or futility following 
repeated scheduled analyses. Bayesian methods for plat-
form designs may achieve further efficiencies through the 
sharing of information across multiple participant popu-
lations (e.g. immunocompromised subpopulations) and 
standardised procedures (e.g. timing of visits and blood 
samples, safety monitoring) under a single core protocol 
[8–10].

Bringing optimised COVID-19 vaccine schedules to 
immunocompromised populations (BOOST-IC) is a 
multi-site, adaptive platform trial designed to assess the 
effect of alternative booster vaccination schedules on 
the immunogenicity, safety and cross-protection against 
SARS-CoV-2 and its variants, in the Australian immu-
nocompromised population [11] (Australian and New 
Zealand Clinical Trials Registry NCT05556720). We 
summarise the structure and objectives of the BOOST-
IC trial and how these are mathematically represented, 
modelled and reported, including specification of the 
estimands, statistical models and decision criteria for 
trial adaptations. This paper should be read in conjunc-
tion with the BOOST-IC study protocol [11]. Given the 
complex statistical modelling, we intend to supplement 
the study protocol following a similar approach for the 
PICOBOO trial [12], employing much of the same struc-
ture and notation.

We begin by briefly describing the trial structure before 
specifying the trial subpopulations, randomisation meth-
ods and estimands. The Bayesian modelling approach 
follows [13, 14], along with a description of the planned 
trial adaptations and the pre-specified decision criteria 
evaluated at each scheduled analysis [15]. The estimands 
(ICH E9 (R1)) define the vaccine effects to be quantified, 

incorporating the target populations, endpoints, statisti-
cal methods and models, population level estimators and 
how to account for intercurrent events [16]. We conclude 
with a summary of the design at trial commencement 
and a discussion on how the BOOST-IC trial compares 
to other innovative contemporaneous designs that can be 
used to inform vaccine policy.

Trial structure
The BOOST-IC adaptive platform trial is designed to 
assess the immunogenicity and safety of one- or two-
dose booster vaccination schedules across three COVID-
19 vaccine brands in immunocompromised populations. 
Strata are defined by immunocompromised subpopula-
tion and baseline SARS-CoV-2 anti-spike immunoglobu-
lin G (IgG) antibody serostatus. The trial has the capacity 
to accommodate additional strata, vaccine brands, vac-
cine brand subtypes (vaccine subtypes produced by 
the same manufacturer, e.g. bivalent BA.4/5, XBB.1.5) 
as both novel vaccines and policy evolves over time in 
response to emerging VoC. We define, in detail, the nota-
tion for participants, strata, interventions, trial vaccine 
dose numbers, covariates and time epochs in the follow-
ing sections.

Participants
Let N be the number of participants included in a 
given analysis where participants are denoted by 
i ∈ I = {1, 2, . . . ,N }.

Strata: immunocompromised subpopulation and baseline 
serostatus
Mutually exclusive immunocompromised subpopu-
lations are denoted by j ∈ J = {HIV, SOT, HM} and 
SARS-CoV-2 anti-spike IgG antibody serostatus at enrol-
ment (hereafter known as baseline serostatus) is denoted 
by l ∈ L = {Undetectable, Detectable} . Here, HIV, SOT 
and HM represent people living with human immuno-
deficiency virus, solid organ transplants and haemato-
logical malignancies, respectively. Participants who are 
eligible for multiple subpopulations are assigned to the 
single subpopulation judged to be the most immunocom-
promising by the treating clinician. Strata are defined as 
mutually exclusive groups based on the combination of 
the participant’s immunocompromised subpopulation 
and baseline serostatus. BOOST-IC has the capacity to 
include additional strata as part of the design as the trial 
progresses.

Interventions
Separate vaccine brands are denoted by v ∈ {1, 2, . . . ,V } . 
Vaccine brand v has subtypes (vaccine subtypes produced 
by the same manufacturer) sv ∈ {1, 2, . . . , Sv} , where Sv is 
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the total number of subtypes for vaccine brand v. Sepa-
rate vaccine interventions are denoted:

Acknowledging that vaccine subtypes vary over time 
and, within the Australian setting, brand availability is 
often restricted to the most recent vaccine subtype, there 
will only be up to three vaccine interventions allocated in 
the trial at any one time, where each allocation is for the 
most recently released brand subtype (i.e. allocations to 
BA.1 vaccine cease when the next VoC vaccine, BA.4/5, 
becomes available). This labelling will also easily accom-
modate new interventions should these options expand 
over time, whether these are vaccine brands or vaccine 
brand subtypes.

Trial vaccine dose number
Participants are randomised with equal allocation 
probabilities to either a one- or two-dose trial vaccine 
schedule. The trial vaccine dose numbers are denoted 
t ∈ T i ⊆ T = {1, 2} . Here, T i refers to the set of avail-
able trial dosing occasions for participant i. We make 
this distinction clear as participants will receive trial 
doses according to their randomised schedule (one or 
two doses) and consequently provide varying numbers of 
observations. Note that participants allocated to a two-
dose schedule will provide an additional blood sample at 
approximately 28 days following randomisation (i.e. fol-
lowing the first vaccine occasion) to align with the partic-
ipants allocated to a one-dose schedule. This will provide 
additional data to inform the estimands at 28 days.

Covariates
Participant i’s covariates are denoted xi = {xi1, xi2, . . . , xiP} , 
and are governed by P model parameters. The covari-
ates may include standardised baseline outcome, previous 
COVID-19 infection (defined below), number of previous 
(non-trial) SARS-CoV-2 vaccine doses, site and sex. Con-
tinuous covariates are standardised within stratum and the 
reference value for categorical covariates is set to the most 
frequently observed value. The covariates included in the 
model may differ for each estimand.

Previous COVID‑19 infection
The covariate previous COVID-19 infection is derived 
using participant reported previous SARS-CoV-2 infec-
tion in combination with their baseline anti-nucleocapsid 
antibodies test result, where detection indicates previous 
infection. The absence of any evidence of detection (self 
reports or nucleocapsid test results) is assumed to be no 

k ∈ K = {(v, sv)} = {(1, 1), (1, 2), . . . , (1, S1), (2, 1), (2, 2), . . . , (2, S2), . . . , (V , 1), (V , 2), . . . , (V , SV )}

previous infection. The details for this derivation are in 
Table 1.

Time epochs
We introduce time epochs to address potential concerns 
regarding the impact of time on a multi-year trial (e.g. 
evolution of the circulating SARS-CoV-2 variants, prev-
alence of COVID-19 infection, prevalence of seasonal 
infectious diseases). We denote participant i’s time epoch 
relative to the data cutoff date as zi = {zi1, zi2, . . . , ziQ} , 
where there are Q epochs. At each scheduled analy-
sis, epochs will start at the date of data cut-off and be 
counted backwards using 6 month periods until the time 
of trial commencement with the most recent epoch as the 
reference level. Epochs will be modelled using the ‘Bayes-
ian time machine’ approach demonstrated by Saville et al. 
[12, 17–19].

Analysis sets
We define distinct but potentially overlapping analysis 
sets (trial populations) in Table  2 in order to precisely 
define the estimands.

Randomisation
Enrolled participants will be allocated at random to one 
of the available interventions and to either a one- or two-
dose schedule with equal allocation probabilities (i.e. 
without blocking). Randomisation will be conducted 
centrally using a computer-generated random allocation 
algorithm and will be stratified by immunocompromised 
subpopulation. New vaccines will replace existing inter-
ventions as the trial progresses and available vaccines 
reflect the circulating variants.

Table 1  Derivation of previous COVID-19 infection covariate

Participant reported 
previous SARS-CoV-2 
infection

Baseline anti-nucleocapsid 
antibodies test result

Derived 
variable

No Negative No

Positive Yes

Missing No

Yes Negative Yes

Positive Yes

Missing Yes

Missing Negative No

Positive Yes

Missing No
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Statistical modelling
Bayesian statistical methods allow for the incorporation 
of prior knowledge of intervention effects (via a prior dis-
tribution) with the observed data to produce an updated 
state of knowledge (a posterior distribution) [20]. The 
BOOST-IC adaptive trial also employs Bayesian hier-
archical methods in order to efficiently share informa-
tion, accrued from observed data and prior knowledge, 
between estimates for trial vaccine dose numbers, immu-
nocompromised subpopulations and interventions. We 
detail the estimands and Bayesian models, including the 

prior distributions for the model parameters, in the fol-
lowing sections.

Estimands
The estimands are summarised in Table  3 with further 
detail provided in the study protocol [11]. Details on how 
intercurrent events will be handled for each estimand 
are provided in supplementary material. As the trial pro-
gresses, new and emerging laboratory tests and proce-
dures may supersede those currently stated and existing 

Table 2  Summary of analysis sets

Analysis set Abbreviation Description

Modified intention-to-treat MI All participants who were randomised to an intervention, provided a blood sample 
within the appropriate estimand window and do not have evidence of receiving a non-trial 
SARS-CoV-2 vaccine dose between randomisation and the time of endpoint collection. Par-
ticipants will be analysed according to their assigned intervention irrespective of withdrawal, 
treatment compliance or other protocol deviations.

Modified intention-to-treat subgroup MI-S Subset of MI without evidence of a SARS-CoV-2 infection or receiving antibody therapy 
between randomisation and the time of endpoint collection. Evidence of SARS-CoV-2 infection 
after randomisation may include a rapid antigen test or polymerase chain reaction con-
firmed self-reported infection or a positive anti-nucleocapsid antibodies test for participants 
with a negative anti-nucleocapsid antibodies test at baseline.

Immunological subset IS Subset of MI who were sequentially enrolled at selected sites to provide blood samples 
for additional detailed laboratory analysis.

Immunological subset subgroup IS-S Subset of MI-S who were sequentially enrolled at selected sites to provide blood samples 
for additional detailed laboratory analysis.

Safety population SP All participants who were randomised to, and received, an intervention. Participants will be 
analysed according to the intervention received, irrespective of withdrawal or other protocol 
deviations. Participants who do not receive a vaccine are excluded, whereas trial-ineligible 
participants who are incorrectly randomised and received an intervention are included.

Table 3  Summary of trial estimands

a Days are counted from each trial vaccine dosing occasion for estimands 01, 04, 07, 10, 13, 16 and 19, and from final trial vaccine dosing occasion for estimands 02–03, 
05–06, 08–09, 11–12, 14–15 and 17–18
b The predominant circulating variant(s) will be determined independently at each scheduled analysis and may vary over the course of the trial
c Defined separately for participants with and without a detectable baseline neutralising antibody titre; a fourfold rise in neutralising antibody titre for those with 
detectable titres at baseline and any detectable neutralising antibody titre for those without

ID Analysis Set Outcome Time (window) in daysa

01 MI-S SARS-CoV-2 anti-spike IgG concentration 28 (21–35)

02-03 MI SARS-CoV-2 anti-spike IgG concentration 180 (150–210) and 365 (335–395)

04 MI-S SARS-CoV-2 anti-spike IgG serostatus 28 (21–35)

05-06 MI SARS-CoV-2 anti-spike IgG serostatus 180 (150–210) and 365 (335–395)

07 MI-S SARS-CoV-2 predominant circulating variantb anti-spike IgG concentration 28 (21–35)

08-09 MI SARS-CoV-2 predominant circulating variant anti-spike IgG concentration 180 (150–210) and 365 (335–395)

10 IS-S Ancestral SARS-CoV-2 neutralising antibodies responsec 28 (21–35)

11-12 IS Ancestral SARS-CoV-2 neutralising antibodies response 180 (150–210) and 365 (335–395)

13 IS-S Magnitude of SARS-CoV-2 specific T-cells 28 (21–35)

14-15 IS Magnitude of SARS-CoV-2 specific T-cells 180 (150–210) and 365 (335–395)

16 IS-S Number of effector cytokines of SARS-CoV-2-specific T-cells 28 (21–35)

17-18 IS Number of effector cytokines of SARS-CoV-2-specific T-cells 180 (150–210) and 365 (335–395)

19 SP Hospitalisation resulting from an adverse event Up to 28 (1–28)
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tests may be removed if they are deemed unreliable or 
uninformative.

Descriptive statistics for demographic variables and safety 
outcomes
The progress of all participants through the trial phases 
will be summarised using a CONSORT flow diagram. 
Demographic data summarised by stratum, intervention 
and trial vaccine dose number will be presented for each 
analysis set. The demographic variables will include, but 
may not be restricted to, age, sex, ethnicity and num-
ber of previous (non-trial) SARS-CoV-2 vaccine doses. 
Continuous variables will be summarised by median and 
interquartile range and categorical variables will be sum-
marised by frequency and percentage. Safety reporting 
will include tabulated and line listed summaries of solic-
ited reactogenicity data on days 1–7 (collected via diary 
cards), solicited adverse events of special interest and 
serious adverse events.

Descriptive statistics for immunogenicity outcomes
Descriptive statistics including the geometric mean and 
mean and standard deviation on the data scale, sum-
marised by stratum, intervention and trial vaccine dose 
number will be presented alongside each corresponding 
planned analysis. All descriptive statistics will be unad-
justed (i.e. not modelled).

Deviations from the protocol
All deviations from the protocol, including missing visits 
and non-trial COVID-19 vaccines received, will be sum-
marised by stratum, intervention and trial vaccine dose 
number.

Missing data
Missing outcome data will be assumed to be missing at 
random and excluded from analyses (i.e. a complete case 
strategy at each timepoint). Calender time (epoch), site 
and sex covariates are critical data (i.e. non-missing for 
all participants). Missing baseline immunological data 
will be set to the respective stratum standardised mean 
(i.e. zero).

Undetectable concentrations for baseline immune 
outcomes
Undetectable concentrations for baseline immunologi-
cal data will be replaced with the midpoint value between 
zero and the limit of detection for each assay. The limit 
of detection for each assay will be documented in each 
report.

Binary outcome model
Estimands 04, 05–06, 10, 11–12 and 19 in Table  3 will 
be analysed using the following Bernoulli model with 
logit-link function for the binary outcomes denoted 
oijklt ∈ {0, 1} for participant i receiving trial vaccine dose 
t, allocated to intervention k in immunocompromised 
subpopulation j with baseline serostatus l:

For estimands 04, 10 and 19 (day 28 outcomes) there 
is a participant level intercept denoted ai as participants 
allocated to the two-dose schedule may provide more 
than one outcome ( ai = 0 for estimands 05–06 and 
11–12). The log odds of the outcome for a participant 
receiving trial vaccine dose t, allocated to intervention k, 
in immunocompromised subpopulation j with baseline 
serostatus l is πjklt , when the covariates are at their refer-
ence level and it is the most recent epoch. The additive 
effect of covariate p for a participant allocated to inter-
vention k is denoted βkp and the parameter for the effect 
of the qth epoch is ηq (where η1 is the most recent epoch, 
η2 the previous epoch, etc., counting backwards in calen-
dar time). The prior distributions for the parameters in 
(1), excluding the time epoch parameters, are:

We implement a first-order dynamic model (Bayesian 
time machine) for the time epoch parameters to adjust 
for temporal drift, with the most recent epoch η1 as the 
reference and the prior distributions given by:

Two‑part model
Estimands 01, 02–03, 07 and 08–09 in Table  3 will be 
analysed using a two-part model as it is anticipated that 
a significant proportion of the SARS-CoV-2 anti-spike 
IgG concentrations may be below the limit of assay 

(1)

oijklt ∼ Bernoulli logit−1 ai + πjklt +

P

p=1

xipβkp +

Q

q=1

ziqηq

∀i ∈ I , j ∈ J , k ∈ K , l ∈ L, t ∈ T

(2)ai ∼ N(0, 1) ∀i ∈ I

(3)πjklt ∼ N(0, 22) ∀j ∈ J , k ∈ K , l ∈ L, t ∈ T

(4)βkp ∼ N(0, 1) ∀k ∈ K , p ∈ {1, 2, . . . ,P}

(5)η1 = 0

(6)ηq ∼ N(ηq−1,φ
2
q) ∀q ∈ {2, 3, . . . ,Q}

(7)φq ∼ IG(3, 1) ∀q ∈ {2, 3, . . . ,Q}
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detection for some subpopulations. For participant i 
receiving trial vaccine dose t, allocated to intervention 
k in immunocompromised subpopulation j with base-
line serostatus l, we denote oijklt ∈ {0, 1} as an indicator 
variable for the corresponding concentration outcome 
being above the assay limit of detection (i.e. a detect-
able response). The binary outcome oijklt is modelled 
using the Bernoulli model and prior distributions 
described in the previous section (1)–(7). Note that the 
participant level intercept, ai , will have the prior distri-
bution defined in (2) for estimands 01 and 07 and be set 
to zero for estimands 02–03 and 08–09.

Then, conditional upon a detectable response as 
defined above, the corresponding observed log10 trans-
formed concentration outcome is denoted Yijklt ∈ R and 
is modelled using the following Gaussian model:

Note that (8) and (9) will be used for estimands 01 
and 07 as participants allocated to the two-dose sched-
ule may provide more than one outcome, while only (8) 
will be used for estimands 02–03 and 08–09. The mean 
log10 concentration outcome, conditional on a detecta-
ble response, for a participant receiving trial vaccine 
dose t, allocated to intervention k, in immunocompro-
mised subpopulation j with baseline serostatus l is θjklt , 
when the covariates are at their reference level and it is 
the most recent epoch. The additive effect of covariate 
p for a participant allocated to intervention k is denoted 
γkp , the parameter for the effect of the qth epoch is ωq 
(where ω1 is the most recent epoch, ω2 the previous 
epoch, etc., counting backwards in calendar time) and 
the baseline serostatus specific covariance matrix is 

�l =

(

σ 2
l rlσ

2
l

rlσ
2
l σ 2

l

)

.

A hierarchical structure is imposed on the prior dis-
tributions for θjklt as it is anticipated that responses may 
be mutually informative across immunocompromised 
subpopulations, interventions and trial vaccine dose 
numbers (i.e. within baseline serostatus levels). How-
ever, the following prior distributions have been chosen 
to ensure that the level of information sharing is data 
driven:

(8)

Yijklt |oijklt = 1, oijklt ′ = 0 ∼ N



θjklt +

P
�

p=1

xipγkp +

Q
�

q=1

ziqωq , σ
2
l





∀i ∈ I , j ∈ J , k ∈ K , l ∈ L, t ∈ T , t ′ = {t ′ ∈ T |t ′ �= t}

(9)

(

Yijkl1

Yijkl2

)

|oijkl1 = oijkl2 = 1 ∼ N

((

θjkl1 +
∑P

p=1 xipγkp +
∑Q

q=1
ziqωq

θjkl2 +
∑P

p=1 xipγkp +
∑Q

q=1
ziqωq

)

,�l

)

∀i ∈ I , j ∈ J , k ∈ K , l ∈ L

(10)
θjklt ∼ N(µundet, τ

2
undet) ∀j ∈ J , k ∈ K , l = Undetectable, t ∈ T

The priors on the mean log10 concentration parameters, 
µdet and µundet , are based on data from the COV-BOOST 
trial publication [21] with the values for the respec-
tive hyperprior distributions informed by the mean and 
standard deviation log10 concentrations after a two-dose 
(priming) schedule with ChAdOx1 nCov-19 (Oxford-
AstraZeneca, log10(801) ) and after a three-dose (booster) 
schedule with ChAdOx1 nCov-19 ( log10(2457) ), respec-
tively, with standard deviations on log10 scale of 0.3 so 
that the priors are weakly informative. The hyperprior 
distributions are:

The priors on the standard deviation terms τundet and 
τdet place the mode of the standard deviations around 
0.25 with a weight of 2.3 (i.e. regularising and weakly 
informative with low density mass close to zero, thus 
information sharing will be data driven). Note that these 
prior means and standard deviations are specific for the 
analysis of estimand 01 and may vary for the analyses of 
other the other estimands, which will be pre-specified in 
statistical analysis plan.

Using a similar approach to the Bernoulli model 
described in the previous section, the priors for the 
covariate parameters and time epoch parameters are:

A regularising prior structure is defined for the decom-
posed covariance matrix �l , where Ql contains the 
standard deviation parameters σl and Rl contains the 
correlation parameters rl . The exponential prior assumes 
that larger values of the standard deviation parameters 
are increasingly unlikely. The Lewandowski-Kurowicka-
Joe (LKJ) prior distribution is specified for the correlation 
matrices, where η > 1 favours smaller correlations.

(11)θjklt ∼ N(µdet, τ
2
det) ∀j ∈ J , k ∈ K , l = Detectable, t ∈ T

(12)µundet ∼ N
(

log10(801), 0.3
2
)

(13)µdet ∼ N
(

log10(2457), 0.3
2
)

(14)τundet ∼ IG(3, 1)

(15)τdet ∼ IG(3, 1)

(16)γkp ∼ N(0, 1) ∀k ∈ K , p ∈ {1, 2, . . . ,P}

(17)ω1 = 0

(18)ωq ∼ N(ωq−1,ψ
2
q ) ∀q ∈ {2, 3, . . . ,Q}

(19)ψq ∼ IG(3, 1) ∀q ∈ {2, 3, . . . ,Q}
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Count outcome model
Estimands 13, 14–15, 16 and 17–18 in Table  3 will 
be analysed using the following Poisson model with 
log-link function for the count outcomes denoted 
Yijklt ∈ Z+ for participant i receiving trial vaccine dose 
t, allocated to intervention k in immunocompromised 
subpopulation j with baseline serostatus l:

For estimands 13 and 16, there is a participant level 
intercept denoted ai as participants allocated to the 
two-dose schedule may provide more than one out-
come ( ai = 0 for estimands 14–15 and 17–18). The 
mean rate (on the log scale) of the outcome for a par-
ticipant receiving trial vaccine dose t, allocated to 
intervention k, in immunocompromised subpopulation 
j with baseline serostatus l is �jklt , when the covariates 
are at their reference level and it is the most recent 
epoch. The additive effect of covariate p for a partici-
pant allocated to intervention k is denoted βkp and the 
parameter for the effect of the qth epoch is ηq (where η1 
is the most recent epoch, η2 the previous epoch, etc., 
counting backwards in calendar time).

The prior distributions for the participant level inter-
cepts, covariate parameters and time epoch parameters 
are the same as for the binary outcome model: (2) and 
(4)-(7). The prior distributions for the (log) mean rate 
parameters in (25) are:

The Poisson regression model may be replaced with a 
negative binomial regression model if over-dispersion is 
detected.

(20)�l = QlRlQl ∀l ∈ L

(21)Ql =

(

σl 0
0 σl

)

∀l ∈ L

(22)Rl =

(

1 rl
rl 1

)

∀l ∈ L

(23)σl ∼ Exponential(0.5) ∀l ∈ L

(24)Rl ∼ LKJcorr(2) ∀l ∈ L

(25)
Yijklt ∼ Poisson



log−1



ai + �jklt +

P
�

p=1

xipβkp +

Q
�

q=1

ziqηq









∀i ∈ I , j ∈ J , k ∈ K , l ∈ L, t ∈ T

(26)
�jklt ∼ N(log(500), 1) ∀j ∈ J , k ∈ K , l ∈ L, t ∈ T

Planned exploratory subgroup analysis
A planned exploratory subgroup analysis for estimand 01 
will be conducted to address the heterogeneity inherent 
within each of the prespecified immunocompromised 
subpopulations. Note that this is the only planned sub-
group analysis and it is exploratory (i.e. hypothesis gener-
ating). In this analysis, we introduce subgroups denoted 
sj as follows:

Note that participants may only belong to one sub-
group within each immunocompromised subpopulation. 
Solid organ transplant recipients will be allocated to the 
subgroup representing their transplantation. Where mul-
tiple transplants have been received, participants will be 
classified to a single group based on the highest rank: 1st 
Lung, 2nd Heart, 3rd Renal and 4th Liver (i.e. if a partici-
pant has both a heart transplant and liver transplant then 
they will allocated to the heart transplant subgroup).

We replace oijklt and Yijklt with oisjklt and Yisjklt , respec-
tively from the two-part model (i.e. the observations 
are denoted at the subgroup level instead of the immu-
nocompromised subpopulation level). The likelihood 
components of the model keep their form with the addi-
tional replacement of the parameters πjklt and θjklt with 
πsjklt and θsjklt , respectively (i.e. we estimate the log odds 
of a detectable response and the mean log10 SARS-
CoV-2 anti-spike IgG concentration conditional on a 
detectable response at the subgroup level instead of the 
immunocompromised subpopulation level). The other 
model parameters ( ai , βkp , ηq , γkp , ωq , σl and rl ), and their 
respective prior distributions, remain unchanged.

The prior distribution for the modified parameters for 
the binary component of the model are:

The prior distributions for the continuous component 
of the model are hierarchical and share information first 
within immunocompromised subpopulation levels and 
then within baseline serostatus levels. The first level pri-
ors are:

The second level priors are:

sHIV ∈ SHIV = {< 250 CD lymphocyte count,≥ 250 CD lymphocyte count}

sSOT ∈ SSOT = {Lung,Heart, Renal, Liver}

sHM ∈ SHM = {Chronic lymphocytic leukemia,Myeloma, Lymphoma}

(27)
πsjklt ∼ N(0, 22) ∀sj ∈ Sj , j ∈ J , k ∈ K , l ∈ L, t ∈ T

(28)
θsj klt ∼ N(µj,undet, τ

2
j,undet) ∀sj ∈ Sj , j ∈ J , k ∈ K , l = Undetectable, t ∈ T

(29)θsj klt ∼ N(µj,det, τ
2
j,det) ∀sj ∈ Sj , j ∈ J , k ∈ K , l = Detectable, t ∈ T

(30)µj,undet ∼ N(µundet, τundet)
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The remaining parameters ( µundet , τundet , µdet and τdet ) 
have the same prior distributions as the corresponding 
parameters in the two part model (12)-(15). Note that the 
planned exploratory analysis will only be conducted once 
the trial has concluded.

Computational methods
All statistical models will be programmed in the proba-
bilistic programming language Stan [22]. To interface 
with Stan, we use the cmdstanr package [23] within the 
R statistical programming environment v4.2.2 [24]. Pos-
terior distributions will be estimated using the No-U-
Turn Sampler (NUTS), which is a Markov-chain Monte 
Carlo (MCMC) algorithm and extends the Hamiltonian 
Monte Carlo (HMC) method. Each analysis will incorpo-
rate eight MCMC chains, run in parallel, with warm-up 
and sampling phases each running for 1000 iterations. 
Sampling diagnostics including trace plots, effective sam-
ple sizes and divergent transitions will be monitored and 
assessed to determine algorithm convergence. As appro-
priate, the team may adjust the sampling specifications 
accordingly and document this in any arising publica-
tions and reports.

Discretion is made for analyses to vary from the 
detail presented here in order to address model issues. 
For example, if some model parameters are uninformed 
due to no participants within a specific category or 
stratum then the model may be reparameterised or 
those parameters may not be reported. Furthermore, in 
consultation with the Data Safety Monitoring Commit-
tee (DSMC), the analytic team may recommend against 
conducting a prespecified analysis if there is insufficient 
data to produce meaningful results.

Quantities of interest, decision criteria 
and scheduled analyses
The primary quantities of interest in the BOOST-IC 
trial are the mean log10 SARS-CoV-2 anti-spike IgG 
concentration measured ∼ 28 days after each trial vac-
cine dose for each immunocompromised subpopula-
tion j, intervention k, baseline serostatus l and trial 
vaccine dose t, conditional on a detectable response. 
These quantities will be derived from estimand 01 
(Table  3) using the two-part model. Model parameter 

(31)µj,det ∼ N(µdet, τdet)

(32)τj,undet ∼ IG(3, 1)

(33)τj,det ∼ IG(3, 1)

θjklt posterior distributions will be employed to inform 
trial adaptation decisions and report to the DSMC, in 
addition to quantifying population-level intervention 
effects in any trial publications.

Intervention comparisons
At trial conclusion we will conduct a series of pre-
specified intervention comparisons via the quantity of 
interest θjklt . The intervention comparisons will be con-
ducted within each immunocompromised subpopula-
tion j and baseline serostatus level l. The comparisons 
are structured as follows: 

1	 Within each immunocompromised subpopulation j, 
intervention k and baseline serostatus level l, com-
pare the mean log10 SARS-CoV-2 anti-spike IgG 
concentration, conditional on a detectable response, 
between one and two trial vaccine doses (t), where 
Pjkl = Prob(θjkl2 > θjkl1) . 

(a)	 If Pjkl > 0.9 then declare the two dose strategy 
superior to the one dose strategy for this stra-
tum-intervention combination and select the 
two dose strategy for step 2.

(b)	 Otherwise, select the one dose strategy for this 
stratum-intervention combination for step 2.

(c)	 The selected dosing strategy is denoted t∗ in 
step 2.

2	 Within each immunocompromised subpopulation 
j and baseline serostatus level l, compare the mean 
log10 SARS-CoV-2 anti-spike IgG concentration, con-
ditional on a detectable response, between each inter-
vention (k) with the selected dosing strategies ( t∗ ) 
from step 1. For the comparison between interven-
tion k and k ′ compute Pjkk ′l = Prob(θjklt∗ > θjk ′lt∗) . 

(a)	 If Pjkk ′l > 0.9 then declare intervention k supe-
rior to intervention k ′ for this stratum.

(b)	 If Pjkk ′l < 0.1 then declare intervention k ′ supe-
rior to intervention k for this stratum.

(c)	 Otherwise, there is insufficient evidence to 
declare either intervention k or intervention k ′ 
as superior for this stratum.

The probabilities for each comparison will be reported 
alongside the medians and 95% highest density credible 
intervals of the (difference) distributions.

Scheduled analyses and DSMC
The first scheduled analysis will be performed after 260 
participants have completed their ∼ 28 day endpoint after 
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their final trial vaccine dose and the results from the 
batched blood samples are available from the laboratory 
analysis. Thereafter, scheduled analyses will be performed 
after every 100 additional participants with available ∼ 28 
day laboratory results for the remainder of the trial. Data 
will be extracted from the BOOST-IC database imme-
diately prior to the commencement of each scheduled 
analysis and the BOOST-IC analytic team will prepare a 
report containing all pre-specified analyses for which the 
data is available (including immunogenicity and safety 
data) for the DSMC in a closed report. An open report 
containing safety data without reference to the interven-
tion received will be provided to trial investigators. The 
DSMC will make recommendations to the BOOST-IC 
trial steering committee based on an assessment of both 
the open and closed reports.

Precision
We will compute the precision of each quantity of inter-
est to be assessed against pre-specified precision criteria. 
The precision, ρjklt , of the posterior distribution of θjklt 
is defined as the width of 95% highest density credible 
interval:

Here, θ̂jklt,U  and θ̂jklt,L represent the upper and lower 
bounds, respectively, of the 95% highest density credible 
interval of the posterior distribution of θjklt . High values 
of ρjklt indicate high uncertainty, and therefore low preci-
sion, in the estimation of θjklt . Similarly, low values of ρjklt 
indicate low uncertainty, and therefore high precision, in 
the estimation of θjklt.

We define the precision criteria for estimand 01 (log 
scale) for the immunocompromised subpopulation j as:

Here, we say that the precision criteria has been met 
for an immunocompromised subpopulation j if the width 
of the 95% highest density credible interval for the mean 
parameter θjklt is less than 0.3 units on the log10 scale for 
all currently available interventions, trial vaccine dose 
numbers and baseline serostatus levels. Assuming the 
posterior distribution is approximately symmetric, on the 
untransformed scale (U/mL), this equates to lower and 
upper bounds corresponding to a multiplicative reduc-
tion of 0.668 or a multiplicative increase of 1.496 to the 
mean. This threshold was determined through discus-
sions with clinicians and in conjunction with exten-
sive computer simulations demonstrating its suitability 
across a range of plausible trial scenarios (supplementary 
material).

(34)ρjklt = θ̂jklt,U − θ̂jklt,L

(35)ρjklt < 0.3 ∀k ∈ K , l ∈ L, t ∈ T

Trial adaptations
At each scheduled analysis, the precision will be assessed 
against the precision criteria for each immunocom-
promised subpopulation for estimand 01. If the preci-
sion criteria is met, i.e. the precision is sufficiently high, 
within an immunocompromised subpopulation then 
recruitment will be ceased into that immunocompro-
mised subpopulation. The outcomes of the precision 
criteria assessments will be included in the report pro-
vided to the trial investigators and DSMC. If the preci-
sion criteria is not met, then recruitment will be ceased 
to an immunocompromised subpopulation once there 
are at least 320 total participants randomised from that 
subpopulation.

Trial commencement
At commencement, the BOOST-IC trial enrolled partici-
pants from the HIV, SOT and HM immunocompromised 
subpopulations and randomised each to receive one or 
two dose schedules of the Moderna Spikevax Original/
Omicron BA.1 vaccine.

To validate the trial design prior to trial commence-
ment, computer simulations were generated to deter-
mine the trial operating characteristics under a range 
of plausible scenarios (supplementary material). The 
objective of the simulation study was to assess the 
choice of precision threshold (i.e. whether or not adap-
tations were triggered due to sufficient precision within 
an immunocompromised subpopulation prior to maxi-
mum recruitment). Trial simulations were explored by 
varying the number and timing of sequential analy-
ses, precision criteria threshold, recruitment rates and 
intervention detectable proportions, conditional means 
and standard deviations. The simulations for each sce-
nario assumed full recruitment up to a maximum of 
960 participants (320 per immunocompromised sub-
population) including 5% loss to follow up between 
randomisation and endpoint collection (for estimand 
01). We chose conditional mean and standard devia-
tion SARS-CoV-2 anti-spike IgG concentrations to be 
similar to those in the COV-BOOST trial publication 
[21]. The standard deviation for the simulated log10 
SARS-CoV-2 anti-spike IgG concentration was varied 
from 0.3 to 0.5 and a weak correlation of rl = 0.3 was 
assumed.

The simulation results including the median preci-
sion and mean sample sizes are presented in Table  4. 
As anticipated, an increase in the proportion of par-
ticipants with a detectable response led to an increase 
in the precision. Additional gains in precision are 
anticipated by the inclusion of covariates in the two-
part model, and the ability to recruit greater numbers 
in patient subpopulations with higher variability when 
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recruitment has stopped prior to reaching the maxi-
mum in other patient subpopulations.

Current state
The BOOST-IC trial opened recruitment on Decem-
ber 17, 2022, and has recruited 384 participants with 
follow-up ongoing as of May 2025. The first scheduled 
blinded analysis was conducted on the first 260 par-
ticipants on August 21, 2024. Due to the availability 
of COVID-19 vaccines over time, participants have 
been randomised to Moderna Spikevax Original/Omi-
cron BA.1, Pfizer Comirnaty Original/Omicron BA.1, 
Moderna Spikevax Original/Omicron BA.4/5, Pfizer 
Comirnaty Original/Omicron BA.4/5, Moderna Spik-
evax Omicron XBB.1.5 and Pfizer Comirnaty Omicron 
XBB.1.5 (note that at no point was a Novavax interven-
tion included). The current version of the protocol is 
version 8.1 (June 28, 2024).

Discussion
The BOOST-IC trial follows other contemporaneous plat-
form trials, including the Australasian COVID-19 Trial 
(ASCOT) [25], the Randomized Embedded Multifacto-
rial Adaptive Platform trial for Community-Acquired 
Pneumonia (REMAP CAP) [26], the Staphylococcus 
Network Adaptive Platform trial (SNAP) [19, 27] and 
the PICOBOO trial [7], to drive the way forward for 
innovative, resource-efficient trial designs in the clinical 
research space. In common with the PICOBOO trial, we 
aim to inform COVID-19 policy in Australia, and com-
pliment the global evidence supporting vaccine schedules 
in immunocompromised individuals. This paper pro-
vides a detailed account of the statistical elements and 
design of the BOOST-IC trial. As the trial progresses, 

interim statistical implementation guides will be made 
available online. The purpose of the statistical imple-
mentation guides will be to detail to exact specifications 
of the trial structure, analysis populations and statistical 
modelling at the time of each scheduled analysis, in con-
trast to the more general overview of the statistical ele-
ments provided here. A full statistical analysis plan will 
be produced and made available prior to trial conclusion 
that details the final statistical analysis. We aim to pro-
vide transparency concerning all analyses and a detailed, 
generalisable Bayesian model for other researchers in the 
changing COVID-19 vaccine landscape.
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ASCOT	� Australasian COVID-19 trial
BOOST-IC	� Bringing Optimised COVID-19 Vaccine Schedules to 

Immunocompromised Populations
ChAdOx1 nCov-19	� Oxford-AstraZeneca vaccine
CD	� Cluster of differentiation
CONSORT	� Consolidated Standards of Reporting Trials
COVID-19	� Coronavirus 2019
COV-BOOST	� Comparing COVID-19 booster vaccinations
DSMC	� Data safety and monitoring committee
HIV	� Human immunodeficiency virus
HM	� Haematological malignancies
HMC	� Hamiltonian Monte Carlo
IgG	� Immunoglobulin G
IS	� Immunological subset
IS-S	� Immunological subset subgroup
LKJ	� Lewandowski-Kurowicka-Joe
MCMC	� Markov-chain Monte Carlo
MI	� Modified intention-to-treat
MI-S	� Modified intention-to-treat subgroup
NUTS	� No-U-Turn Sampler
PICOBOO	� Platform trial in COVID-19 priming and boosting
REMAP-CAP	� Randomized Embedded Multifactorial Adaptive Plat-

form Trial for Community-Acquired Pneumonia
SARS-CoV-2	� Severe acute respiratory syndrome coronavirus-2
SNAP	� Staphylococcus Network Adaptive Platform trial
SOT	� Solid organ transplants
SP	� Safety population
VoC	� Variants of concern

Table 4  Median precision and mean sample sizes within immunocompromised subpopulations across simulation scenarios

Scenario Patient group Probability detectable response at 
day 28

SARS-CoV-2 anti-spike IgG 
concentration (U/mL)

Median 
precision

Mean 
sample 
size

Baseline 
undetectable

Baseline 
detectable

Baseline 
undetectable

Baseline 
detectable

Low HIV 0.1 0.5 100 2000 0.37 320

SOT 0.1 0.5 100 300 0.37 320

HM 0.1 0.5 100 300 0.37 320

Moderate HIV 0.3 0.8 200 5000 0.29 320

SOT 0.3 0.8 200 500 0.29 320

HM 0.3 0.8 200 500 0.29 320

High HIV 0.5 0.8 300 10,000 0.26 320

SOT 0.5 0.8 300 1000 0.26 320

HM 0.5 0.8 300 1000 0.26 320
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