Novel Signal Detection Methods for COVID-19 Vaccine Safety Surveillance

Michael Dymock

21st June 2022

TELETHON KIDS INSTITUTE Discover. Prevent. Cure.

Proudly supported by the people of Western Australia through Channel 7's Telethon

WESFARMERS CENTRE OF VACCINES & INFECTIOUS DISEASES

- Vaccination is safe and side effects are usually minor/temporary
- BUT there are always risks
- How do we monitor vaccine safety?
 - Clinical trials (active, selected/healthy population)
 - Spontaneous reports (passive, general population)
 - AusVaxSafety (active, general population)

- SMS sent to participants after vaccination
- SmartVax, Vaxtracker and CVMS data capture
- Safety data summarised weekly
- Signal detection methods to identify changes in safety

Rate of reported medical attention for adverse event within 3 days

following immunisation (medical attendance)

- Cumulative Sum Control Chart (CUSUM)
 - Implemented since March 2021
- Bayesian Posterior Predictive Analysis (PPA)
 - Implemented since July 2021

- Monitor how a rate **changes** over time
- Choose:
 - Expected rate
 - Maximum rate
 - Threshold
- More events → Increased evidence
- Fewer events → Decreased evidence
- Evidence > threshold \rightarrow Investigate

- Estimates probability of medical attendance accounting for participant characteristics (e.g., age, sex and comorbidities)
- Each week predicts expected range for number of medical attendances given participant characteristics
- Sets a threshold based on the range
- Actual number of events > threshold \rightarrow Investigate

Simulated Data 0.100 -0.075 -Threshold Censity 0.050 -0.025 -0.000 -10 15 20 25 30 Number of Events

Signal

No Signal

compare the pan	CUSUM	РРА
Detects changes in rate over time	14 D	THE REAL
Accounts for participant information		AT AT
Requires preset thresholds		the state
Is sensitive to small gradual changes	AT I	
Is sensitive to small sudden changes		(TT)
Can determine the cause	Ĩ	I I

What about the real data?

- Both methods have detected signals at different points in time*
- Signals do not necessarily mean there is a vaccine issue there could be many causes
- Why would one method detect a signal but not the other?
 - Evolution of the responding "population"
 - The methods are technically designed to monitor different effects

*see Catherine Glover's talk for details on signal investigation

Raw Rate

- Continuing using both CUSUM and PPA methods
- Extending the PPA method to model missing data
 - i.e., what do we know about the people that **do not respond** to the survey?
- Developing a causal model

Queensland Government Queensland Health

Australian Government

Department of Health

VICTORIA State Government of Health

WESFARMERS CENTRE OF VACCINES & INFECTIOUS DISEASES

