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Abstract

Background

Pneumonia remains a leading cause of hospitalization and death among young children

worldwide, and the diagnostic challenge of differentiating bacterial from non-bacterial pneu-

monia is the main driver of antibiotic use for treating pneumonia in children. Causal Bayes-

ian networks (BNs) serve as powerful tools for this problem as they provide clear maps of

probabilistic relationships between variables and produce results in an explainable way by

incorporating both domain expert knowledge and numerical data.

Methods

We used domain expert knowledge and data in combination and iteratively, to construct,

parameterise and validate a causal BN to predict causative pathogens for childhood pneu-

monia. Expert knowledge elicitation occurred through a series of group workshops, surveys

and one-on-one meetings involving 6-8 experts from diverse domain areas. The model per-

formance was evaluated based on both quantitative metrics and qualitative expert valida-

tion. Sensitivity analyses were conducted to investigate how the target output is influenced
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by varying key assumptions of a particularly high degree of uncertainty around data or

domain expert knowledge.

Results

Designed to apply to a cohort of children with X-ray confirmed pneumonia who presented to a

tertiary paediatric hospital in Australia, the resulting BN offers explainable and quantitative pre-

dictions on a range of variables of interest, including the diagnosis of bacterial pneumonia,

detection of respiratory pathogens in the nasopharynx, and the clinical phenotype of a pneumo-

nia episode. Satisfactory numeric performance has been achieved including an area under the

receiver operating characteristic curve of 0.8 in predicting clinically-confirmed bacterial pneu-

monia with sensitivity 88% and specificity 66% given certain input scenarios (i.e., information

that is available and entered into the model) and trade-off preferences (i.e., relative weightings

of the consequences of false positive versus false negative predictions). We specifically high-

light that a desirable model output threshold for practical use is very dependent upon different

input scenarios and trade-off preferences. Three commonly encountered scenarios were pre-

sented to demonstrate the potential usefulness of the BN outputs in various clinical pictures.

Conclusions

To our knowledge, this is the first causal model developed to help determine the causative

pathogen for paediatric pneumonia. We have shown how the method works and how it

would help decision making on the use of antibiotics, providing insight into how computa-

tional model predictions may be translated to actionable decisions in practice. We discussed

key next steps including external validation, adaptation and implementation. Our model

framework and the methodological approach can be adapted beyond our context to broad

respiratory infections and geographical and healthcare settings.

Author summary

Pneumonia is a leading cause of hospital visits among young children. Doctors need to

weigh a range of observations to make timely diagnostic and management decisions, includ-

ing to differentiate bacterial from viral infections. This is a difficult task to achieve without

support due to the complex interactions among relevant factors, and is a major driver of

unnecessary antibiotic use. We used domain expert knowledge and data to create a causal

Bayesian network (BN) model which depicts an integrated picture of how biological, epide-

miological and clinical processes interact to form the challenge of diagnosing and managing

children who present to hospital for pneumonia. The model can produce reliable and

explainable quantitative inference to help distinguish viral from bacterial infections. We

used a few examples to demonstrate how the BN can be used in clinical context, and dis-

cussed how computational model predictions may be translated to actionable decisions in

practice. We discussed key next steps including the evaluation of the model using external

data sets, and adaptation and implementation of the model in other settings. We also dis-

cussed how our model framework and the methodological approach can be adapted beyond

our context to broad respiratory infections and geographical and healthcare settings.
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1 Introduction

Pneumonia, infection of the lower airways, remains a leading cause of hospitalisation and

death among young children worldwide [1, 2]. In recent decades, marked reductions in the

burden of disease have occurred thanks to public health strategies including immunisation tar-

geting Haemophilus influenzae type b, Streptococcus pneumoniae, and influenza virus [3, 4],

however substantial morbidity and mortality remains. These interventions have led to a

decline in the contribution of bacterial pathogens in particular, challenging the appropriate-

ness of routine empiric antibiotic use for treating community-acquired pneumonia (CAP) [5].

Viruses are increasingly considered a major cause of paediatric pneumonia especially in high

income settings, and children with viral infection are unlikely to benefit from antibiotic ther-

apy [6, 7]; rather, unnecessary antibiotic use may lead to otherwise avoidable side effects, and

be a driver of antimicrobial resistance [8, 9]. Despite this, antibiotics are still widely prescribed

for children with pneumonia [5] possibly due to the difficulty in excluding bacterial infection

as well as clinician concern regarding the potential consequences of under-treatment of bacte-

rial pneumonia whether caused by ‘typical’ bacterial pathogens such as Streptococcus pneumo-
niae (pneumococcus), atypical bacteria such as Mycoplasma pneumoniae (mycoplasma), or

bacterial super-infection following viral infection [10].

The aetiology of CAP in children has been studied extensively [11]. A number of clinical

and laboratory factors have been shown to be associated with pneumonia in sick children [12–

14], and many of these features (including cough, increased respiratory effort and raised

inflammatory markers) are common in both bacterial and non-bacterial pneumonia. How-

ever, no single predictor exists that is sufficiently sensitive or specific to reliably differentiate

bacterial (including bacterial-viral co-infection) from non-bacterial pneumonia [9]. Also, the

performance of possible predictors may vary by context, e.g., in early versus late stage illness,

or where the underlying prevalence of a pathogen varies [15]. The contribution of bacteria and

viruses to pneumonia has been reported to vary by age, season, vaccine coverage, socioeco-

nomic status, and across countries [6, 16, 17], although a recent review found evidence that

viruses associated for a similar proportion of pneumonias across settings [7]. Isolation of path-

ogens directly from the lower respiratory tract is highly specific and may be sensitive, but sam-

pling is typically invasive, challenging in children, and rarely indicated clinically and

consequently rarely done [18]. Although less specific, nasopharyngeal samples are frequently

used for extrapolating pneumonia aetiology because of ease of collection, however any patho-

gens detected in the nasopharynx might not be the actual cause of the pneumonia [19]. Due to

the dynamic nature of disease epidemiology, non-specific clinical presentation and diagnostic

limitations of laboratory tests, the timely and accurate identification of pathogens causing

pneumonia remains an ongoing challenge.

Mathematical prediction models have been developed to aid clinical diagnosis, and existing

approaches are usually based on quantifying associations between the target (e.g. bacterial

pneumonia) and certain input variables in specified patient groups. Typical statistical regres-

sion methods are agnostic to underlying causal mechanisms and ignore complex interactions,

such as those that occur between epidemiological, clinical, microbiological and immunological

factors in pneumonia. Nevertheless, reasonable diagnostic performance has been achieved [20,

21]. However, the implementation and uptake of these models have been limited for several

reasons. First, validation and clinical implementation of models are often challenged by miss-

ing data [22], such as biomarkers which might be useful predictors but may not be available in

all cases to aid timely clinical decision-making [21]. Second, the models may not be transport-

able from the training context to other clinical contexts, because the predictive values of input

variables are often driven by baseline prevalence [15], infection severity and testing techniques
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employed in the validated study population. Third, association-driven predictions that lack

causal explanation may not be accepted by their intended end-users (i.e., clinicians) [23]. The

clinical implementation of any model for decision support is largely dependent on trust which,

in turn, depends on end-users understanding how the model works.

Bayesian networks (BNs) may offer a solution to the challenges of predictive model design

and implementation into clinical practice [24]. BNs have been used to clarify complex medical

problem domains including diagnosing CAP and ventilator-associated pneumonia [25–27], by

facilitating probabilistic and causal reasoning using directed acyclic graphs (DAGs) [28, 29].

The graphical representation of BNs facilitates the translation of knowledge from domain

experts and that acquired from clinical datasets into a causal inference framework, with quan-

titative relationships between variables. Causal BNs (that is, BNs built to have a causal interpre-

tation) provide probabilistic predictions that are transparent and potentially explainable [30,

31], i.e., representing relevant mechanistic pathways that lead to and can be intervened upon

to change downstream effects, as well as to identify the most probable causes that led to some

event. This is something that cannot be achieved in any non-causal (i.e., predictive) modelling

approach [32]. The development of causal BNs relies on collaboration between domain experts

and modellers to synthesize an understanding of the problem domain with the modelling tech-

nique, creating model outputs that are meaningful for clinical practice. BN model outputs can

be applied to a variety of patient subgroups (such as specific age groups or geographic loca-

tions), and can robustly account for missing input variables like biomarker measurements

from laboratory data. Our previous work has demonstrated how epidemiological, procedural

and laboratory observations can be organised under a BN designed for predicting the causative

pathogen in other childhood infections, and how such a model may be presented to aid clinical

decision making [33, 34].

Here we present a causal BN model that depicts the pathophysiology of pneumonia in chil-

dren, which could be used to help distinguish bacterial (including typical and atypical bacteria,

and mixed viral-bacterial infections) from non-bacterial infections by predicting the causative

pathogen for a given episode. The model was constructed, parameterised, and validated using

both domain expert knowledge and data. We used data obtained from 230 children admitted

to a tertiary hospital in Western Australia from 2015–2018 with pneumonia who underwent

clinical, microbiological, immunological and radiological assessment [5, 35]. A diverse group

of domain experts participated in the knowledge elicitation process. Based on numeric evalua-

tion metrics, the resulting BN showed stable and good performance in predicting clinically-

confirmed bacterial pneumonia as well as the detection of pathogens in the nasopharynx. The

model also produced clinically meaningful outputs as assessed by domain experts via evalua-

tion workshops and surveys. To demonstrate the potential utility of the model, we apply it to

three representative clinical scenarios and we then discuss what work still needs to be done to

achieve the goal of a decision support tool that improves patient management and encourages

judicious use of antibiotics for paediatric pneumonia.

2 Methods

2.1 Ethics statement

Ethics approval was granted by the Child and Adolescent Health Service Human Research Eth-

ics Committee (RGS2477) at Perth Children’s Hospital. Written informed consent was

obtained from the parent or legal guardian of each participant.

A BN model consists of two components, 1) a DAG that qualitatively describes how vari-

ables (nodes) interact with each other, and 2) a joint conditional probability distribution that

quantitatively specifies how changes in each parent variable probabilistically drive changes in
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their child variables. The arrows (arcs) of the DAG indicate the presence of a direct influence

of predecessor (or parent) variables on their child nodes (nodes extending from other nodes).

A causal BN is one in which the arcs represent influences that are causal; sometimes with

minor exceptions for associations that are required, but are not a core part of the causal pro-

cess being modelled. Developing a causal BN involves constructing the model structure (the

DAG) that describes the problem domain of interest, and quantifying the probabilistic effect

that parent variables have on their child variables as a series of conditional probability tables

(CPTs), i.e., parameterisation. In this project we used domain expert knowledge and data in

combination and iteratively, to build a causal BN to predict causative pathogens for childhood

pneumonia, aiming to distinguish bacterial from non-bacterial cases for which the former is

more likely to benefit from antibiotic use. Fig 1 shows the schematic of the BN development

process.

2.2 Knowledge elicitation

Expert knowledge elicitation occurred through a series of group workshops, surveys and one-

on-one meetings involving 6–8 domain experts (with backgrounds in infectious disease, clini-

cal microbiology, emergency medicine, general paediatrics, immunology and epidemiology).

The theme of the workshop and survey was often driven by the evolving modelling progress—

questions arising from data analysis, development of model structure and parameterisation. In

total, as shown in Fig 1, four workshops were conducted covering the development of the

model structure, data interpretation, model structure validation, and validation of the applica-

tion use cases. Five surveys were distributed to inform variable selection, model validation via

clinical use cases, and elicitation of key model parameters. One-on-one meetings were

Fig 1. The schematic of BN development. The top blue row presents the development of the BN from its initial form (left) to the fourth iteration

(right), and how this iteratively interacts with the data analysis (middle grey row) and the knowledge elicitation (KE, bottom green row). Everything is

primarily designed to support model development; however the models themselves also support and drive data analysis and KE. In some cases, there are

also direct interactions between data analysis and KE. During the KE process, survey outcomes often directly guide the design and focus of the

following workshop. As the BN is developed and revised over several iterations, any data analysis, KE or modelling outcomes from an earlier iteration

may inform any of these activities in the next iteration.

https://doi.org/10.1371/journal.pcbi.1010967.g001
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organised when more detailed discussion was considered necessary by the modellers, such as

to consolidate understanding of a particular topic discussed during a workshop. In S1 File, we

provide the detailed description of the model development process (Section A, S1 File) associ-

ated with a full list of survey questions (Section B—F, S1 File).

2.3 BN structure and parameterisation

The final model structure was achieved through an iterative process of synthesising expert

knowledge, data and learnings from earlier BN revisions. Parameterisaton of the model was

conducted using the expectation maximisation (EM) algorithm [36], with one of the following

three methods applied to each node:

A data-driven approach was used to derive CPTs directly from the observed distribution of

relevant variables in the data, when data for those variables was sufficient.

An expert-driven approach was used for conceptual variables that were not or could not be

recorded in the data. In this approach, the CPT was fully specified by domain expert knowl-

edge alone and not further updated with data. For example, susceptibility to progression

describes the extent to which an infected child is at risk of progressing from mild to severe

manifestations of pneumonia. In the model, this susceptibility is higher in younger chil-

dren, in those with chronic respiratory disease, and in those who are

immunocompromised.

A hybrid expert-data approach was used in which expert-driven CPTs were used as a Bayesian

prior (i.e., a starting point) assigned a weight of one data point and subsequently updated

using available data. This method was preferred for variables that were strongly associated

with other data, but could not be directly observed or mapped to any individual variable

(i.e., latent), as well as for observable variables where data were sparse for certain patient

subgroups. Note, the priors used can be accessed via the source model files on Open Science

Framework (https://osf.io/m97vb/).

The parameterisation method for each variable was chosen based the definition of each var-

iable and how well we were able to quantify them based on available data and/or expert knowl-

edge. A description of the parameterisation method used for each variable is provided in the

BN dictionary (S1 Table).

2.4 BN performance and evaluation

We evaluated the performance of the BN in two ways. Quantitatively, numerical evaluation

ensured the model predictions were consistent with the observed data. While metrics that pre-

dict accuracy such as area under the receiver operating characteristic curve (AUROC) have

been widely used, these measures are more suitable for definite classifications. Log loss (and

similar probability-sensitive metrics) is considered more informative for evaluating models

that generate probabilistic predictions [37] like BNs, because it rewards accurate probability

estimates most highly. Log loss is calculated, for a given case, as the negative log of the model’s

estimated probability of what was actually observed (i.e., −log{P(observed outcome)}) with a

lower log loss indicating a better fit of the model to the observed data. To quantitatively evalu-

ate the model predictions from a clinical decision perspective, we also presented model predic-

tions in terms of false positives (FP), false negatives (FN), their associated rates (FPR/FNR),

sensitivity and specificity under different FPR/FNR trade-off preferences.

Sensitivity analyses were conducted using variance-based sensitivity analysis (VBSA) [38,

39], to investigate how the target variable of the model is influenced by varying the
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assumptions for a range of key variables, especially those affected by a high degree of uncer-

tainty around data or domain expert knowledge. More specifically, we simultaneously vary the

parameters for the CPTs of a group of variables (by up to 20%) and observe how the distribu-

tion of a target variable state spreads given the variation in those parameters. Essentially, the

VBSA allows us to investigate the impact on the target of the second order uncertainty that

may exist in the CPT parameters (without incorporating that second order uncertainty directly

into the model).

While acknowledging that overfitting cannot be properly determined until we can assess

the model using external datasets, we can still gain some understanding of where overfitting

may occur by identifying which part of the model is fitted most strongly to our cohort. We

have adopted an approach that compares CPTs between the trained model and prior model

using Kullback–Leibler (KL) divergence [40].

The approaches above are unfortunately of limited value in evaluating the causal features of

a model. For example, it is common for two BNs to differ in their causal features but be identi-

cal in their statistical properties [29, 41]; such models would be assessed as equivalently good

by any of the above metrics. More commonly, major differences in causal features may only

lead to minor differences in predictive performance. Thus, while predictive performance can

help identify significant issues (such as major missing pathways or dependencies), other

approaches must be used to evaluate the individual causal features of a BN. This can be

achieved in a number of ways (e.g., comparing to literature, conducting experiments, etc.);

here we performed this validation with experts, by walking through the DAG structure afresh

at each workshop, and by soliciting feedback on the DAG structure via followup emails. In

addition, we performed qualitative expert validation of the model outputs, allowing us to assess

if the model behaves in a way that meets clinician expectations and offers clinically informative

predictions. We simulated three typical scenarios encountered in clinical practice, and pre-

sented BN predictions in both survey format (Survey 4) and during workshops (Workshops 3

and 4) for expert review.

We used the GeNIe BN (https://www.bayesfusion.com/) software to elicit the BNs pre-

sented here, and Netica (https://www.norsys.com/) to develop and parameterise subsequent

models. Data, evaluation and sensitivity analyses were conducted using R [42] and Python

[43]. Throughout the paper, we label the name of a BN variable in bold, and its state name in

italics where referenced for the first time. Source models, raw evaluation results and python

scripts for running the analysis can be accessed via Open Science Framework (https://osf.io/

m97vb/).

3 Results

Fig 2 presents the high-level structure of the BN (v4.5), a model of paediatric pneumonia at the

point of hospital presentation. We explicitly model the existence of infection separately from

its clinical diagnosis (white nodes), for which the former is our primary target for prediction

but often latent and cannot be directly observed, while the latter may be operationally defined

by a set of clinical or laboratory observations and therefore can be used as a surrogate for eval-

uation. A more detailed description of the model is provided in §3.2.

3.1 Summary of model variables

The model consists of 62 variables including 14 which are background factors, six pathogen-

specific variables describing the presence of pathogens in the nasopharynx, eight variables rep-

resenting infection or the clinical diagnosis of infection, 25 variables representing specific

signs and symptoms, five laboratory variables, and four intervention variables. In the BN
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dictionary, we provide information on each model variable, including identifiers (ID and vari-

able name), what it means and how it’s mapped to data (description), how it’s discretised in

the BN (states), its parents in the BN, and how it’s affected (mechanistically rather than statisti-

cally) by those parent nodes. The dictionary also notes the observational status (whether

observable, latent or derived), and the parameterisation method used (data-driven, expert-

driven or hybrid expert-data) for each variable. Fig 3 shows a sample of the BN dictionary; the

full dictionary is provided in S1 Table.

Alongside the 52 observable variables, nine latent variables were created for modelling pur-

poses, including three concept variables that describe the epidemiological context (Fig 4, light

blue nodes (12)—(14)) and six infection-relevant variables that describe the causative patho-

gens and the sites of the respiratory tract involved (Fig 5, white nodes (21)—(26)). These latent

variables help to explicitly describe important underlying mechanisms that cannot be directly

observed and thus captured by data. With respect to the choice of parameterisation method,

16 variables were exclusively trained from data (data-driven), 7 were exclusively parameterised

based on expert knowledge (expert-driven), and 39 nodes were trained via the hybrid expert-

Fig 2. The high-level model structure of paediatric pneumonia, BN v4.5. Variables were organised into five highly interdependent groups (shown as

rectangle boxes). In the centre of the diagram sits the core part of the model, infection of the respiratory tract (white box), which is predominantly

influenced by the presence of a range of pneumonia-causing pathogens in a child’s nasopharynx (yellow), as well as a number of background factors

(blue). Infection manifests as clinical symptoms, signs and abnormal laboratory markers (salmon). Interventions (purple) refer to investigations and

treatments which are relevant to the episode of pneumonia, and which may either occur before presentation (e.g., prior antibiotic use) potentially

affecting variables like the culture result, or after presentation (e.g., supplemental oxygen) which may be affected by variables like the infection

phenotype. S1 Table includes a BN dictionary which defines each variable.

https://doi.org/10.1371/journal.pcbi.1010967.g002
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data approach. One variable (current clinical phenotype (52)) was introduced as a summary

of the presenting clinical phenotypes of pneumonia. This variable was derived based on a sepa-

rate clustering using the EM algorithm to determine a child’s most probable pneumonia phe-

notype based on their clinical observations. The analysis resulted in two phenotypes, where

phenotype 1 represented a more severe type which increased the probability of all observable

signs and symptoms compared to phenotype 2, and this information was added as an addi-

tional column in the cohort data and subsequently used as an observed variable. We discuss

the role of this variable further below §3.2.3.

3.2 Model description

3.2.1 The epidemiological context. The model introduced three latent concepts (light

blue) to simplify and describe the complex nature of pneumonia epidemiology in children;

namely the level of exposure (12), the susceptibility to colonisation (13), and the susceptibil-

ity to progression (14) (Fig 4). The susceptibility to colonisation summarises the level of a

host’s susceptibility to being colonised in the nasopharynx with ‘typical’ bacterial pathogens,

which is higher in the younger age group (1), in children with impaired immunity (6), and

when there is a smoker in the household (3). The level of exposure refers to the host’s expo-

sure to transmissible pathogens. Greater exposure is associated with older age, more childcare

days per week (5), and Indigenous Australian ethnicity (2), which may in turn be surrogates

of frequent and/or close or prolonged social contact and therefore greater opportunity for

transmission. The susceptibility to progression describes the propensity of the host to pneumo-

nia progression if infected, which is higher if the child is younger, is reported to have impaired

immunity or has chronic respiratory disease (7).

This BN explicitly describes the presence of six pathogens in the nasopharynx: influenza,

respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza, myco-

plasma and typical bacteria (e.g., pneumococcus) (Fig 4, yellow nodes (15)—(20)). Various

epidemiological risk factors interact resulting in varied prevalence of each pathogen in the

nasopharynx, which predispose children to respiratory tract infection including pneumonia,

leading to the core part of the model presented in Fig 5. For example, while seasonality can

influence the prevalence of many pathogens, in this model we use influenza season (9)

(defined as June to September based on the expected pattern of influenza in the southern

Fig 3. Extract from the BN dictionary. The full dictionary is provided in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010967.g003
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hemisphere in the pre-COVID-19 era) as a surrogate of the temporal increase in the preva-

lence of influenza, RSV and HMPV, with the model estimating increases of 220%, 173% and

177%, respectively. Influenza vaccine (11) reduces the probability that influenza is present in

the nasopharynx by a modelled estimate of 67%. Recent antibiotic exposure (60) reduces the

probability of typical bacteria being present in the nasopharynx from 75% to 49%.

3.2.2 The infection. Fig 5 shows how the BN depicts infection, based on whether viruses

or typical or atypical bacteria are involved in a particular pneumonia episode, and whether

upper respiratory sites (nasopharynx and/or throat) are involved when pneumonia is present.

Mycoplasma is an intracellular bacterial pathogen with similarities to viruses with respect to

mechanism of acquisition and some clinical manifestations. For modelling purposes, we

grouped it with the viruses (described as the viral-like group) while keeping all the other bacte-

ria in the typical bacterial group. For viral-like pathogens, the BN assumes infection of the lung

(viral-like pneumonia (23)) can either occur directly without observed upper respiratory tract

infection (URTI), or it can occur following observed URTI including viral-like nasopharyn-

geal infection (21) and viral-like throat infection (22). The exact probability of each virus

causing a respiratory infection is influenced by its pathogenicity (parameters estimated via the

hybrid expert-data approach). Viral infection of the nasopharynx or throat increases the prob-

ability of viral pneumonia. Unlike viral-like pathogens, typical bacteria frequently colonise in

the nasopharynx (62% in the model), described by Typical bacteria in nasopharynx (20), and

spontaneously cause pneumonia (typical bacterial pneumonia (24)) at a much lower fre-

quency than viruses. In addition, pneumococcal vaccination, the presence of viral-like infec-

tion, and the age of the child, can all directly influence the probability of typical bacterial

pneumonia.

We introduced the causative pathogen for pneumonia (25) and upper airway involve-

ment (26) variables to summarise the above. We defined the causative pathogen for pneumo-

nia to be typical bacterial if typical bacterial pneumonia (24) is present, viral-like if viral-like

pneumonia (23) is present and typical bacterial pneumonia is absent, or no pneumonia if both

the typical bacterial and viral-like pneumonia are absent. These no pneumonia cases can be

other lower respiratory tract infections, like bronchitis, and about 7% cases were classified into

this category. For our application’s purpose of guiding antibiotic use, we force the model to re-

Fig 4. The epidemiological context, BN v4.5. Due to the number of arcs emanating from Age group, a lighter shade of blue has been used to make the

graph easier to read. The detailed model structure and definition for each variable are provided in S1 Table. Source model files can be accessed via Open

Science Framework (https://osf.io/m97vb/).

https://doi.org/10.1371/journal.pcbi.1010967.g004
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classify these 7%, distributing them across typical bacterial or viral-like categories by setting X-

ray confirmed pneumonia (27) to case. The operational definition of clinically-confirmed

bacterial pneumonia (28) in the cohort study was either having a pleural effusion (46) or a

positive blood culture result (53), comprising 11% of children in the cohort. As illustrated in

Fig 5, this definition is subject to potential measurement and selection biases introduced by

prior antibiotic exposure, the decision to perform blood culture (61) and hospital transfer

(59).

The BN predicted that of all pneumonia presentations, 28.4% involved infection with typi-

cal bacterial pathogens with a mean of 25.2% based on the 10-fold cross validation (10-fold

mean), while 92.8% (10-fold mean 94.6%) involve infection with viruses or viral-like patho-

gens. Among all pneumonia presentations involving infection with viruses or viral-like patho-

gens, 22.8% (10-fold mean 20.1%) were predicted to also involve infection with typical

bacterial pathogens. From the decision-support perspective, it is important to differentiate

infection with mycoplasma from viruses, and this can be addressed by combining information

provided by two nodes, the causative pathogen for pneumonia (25) and mycoplasma in

nasopharynx (19). In other words, if the model predicts a high probability of infection with a

viral-like pathogen and also a high probability of mycoplasma in nasopharynx, there is a high

probability that mycoplasma is the causative pathogen (with possible implications for

management).

3.2.3 The evidence. From a clinical perspective, a child’s causative pathogen for pneu-

monia (25), current clinical phenotype (52) and upper airway involvement (26) are not

directly observed (i.e., they are latent), and can only be inferred from clinical observations and

the results of laboratory investigations. From a causal perspective, these latent variables

Fig 5. The infection, BN v4.5. The detailed model structure and definition for each variable are provided in S1 Table. Source model files can be

accessed via Open Science Framework (https://osf.io/m97vb/).

https://doi.org/10.1371/journal.pcbi.1010967.g005
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interact to give rise to the various types of evidence including clinical symptoms, signs, and

laboratory results (Fig 6). The potential causes of signs, symptoms, and laboratory results are

rarely deterministic, singular or mutually exclusive. For example, cough (29) can be driven by

upper airway irritation, inflammation, or mucus production (e.g., postnasal drip secondary to

rhinorrhoea/rhinitis) or can be from pneumonia affecting the lower airways. Similarly,

increased respiratory rate (53) can be a consequence of airway inflammation or low oxygen

saturation (58) and can vary by the child’s age.

Background (dark blue) and intervention (purple) factors may also influence certain types

of evidence. For example, age is an important determinant of the report of pain (e.g., headache

(30), abdominal pain (47) and sore throat (32)) because children need to be old enough to

communicate these symptoms. Recent antibiotic exposure (60) may reduce the probability of

a successful blood culture (blood culture result (53)) even if a child is bacteremic. Knowing

the type of oxygen (62) (supplemental or room air) is essential for interpreting oxygen satura-

tion in relation to lung function. Symptoms and signs may also interact, e.g., vomiting (39)

and diarrhoea (40) may lead to reduced oral intake (41) which could subsequently lead to

lethargy (42).

The classification of the current clinical phenotype of pneumonia is analogous to a count-

based metric for disease severity, where those with phenotype 1 had a median of 12 pneumo-

nia-relevant signs and symptoms, compared to a median of 8 for phenotype 2. The inclusion of

this variable allowed us to separate the differential influence of causative pathogen (typical bac-

terial or viral-like) from the severity of clinical manifestations conditional on the causative

pathogen. For example, the overall probability of a child being phenotype 1 (severe) was almost

identical for pneumonia involving viruses and viral-like pathogens (14.0%) and those involv-

ing typical bacterial pathogens (13.6%). For a child who had symptom onset within two days

Fig 6. The evidence, BN v4.5. Causative pathogen for pneumonia, current clinical phenotype and upper airway involvement interact to give rise to the

various types of evidence including clinical signs, symptoms, and laboratory results. The BN dictionary (S1 Table) details how these latent variables may

give rise to each type of evidence. Source model files can be accessed via Open Science Framework (https://osf.io/m97vb/).

https://doi.org/10.1371/journal.pcbi.1010967.g006
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and been transferred from another hospital, the probability of phenotype 1 was much higher

for viral-like pneumonia (79.4%) than typical bacterial case (42.6%). In contrast, if the child

presented to ED directly (not transferred), the overall probability of phenotype 1 is lower

(15.5%), however, typical bacterial pneumonia now has a more severe phenotype (23.8%) than

their viral-like counterparts (12.1%).

3.3 Model evaluation and sensitivity analyses

A child’s causative pathogen for pneumonia (25) is our ideal target for prediction because it

would respond (or not respond) to antibiotic use and subsequently drive the progression of

disease. While the model can predict this variable, it is latent, making it challenging to evaluate

using observational data alone. Hence, we instead assess the performance of the BN using the

recorded clinically-confirmed bacterial pneumonia (28) as the best estimate of the causative

pathogen type, acknowledging that some of these diagnoses may be incorrect. So long as the

number of incorrect diagnoses is not great (less than 5% in BN v4.5 would certainly be accept-

able), this will not affect our conclusions. More specifically, the assumption that node 28 is a

good surrogate would not hold if ‘viral-like pneumonia (node 25)’ can also probabilistically

lead to pleural effusion or positive blood culture, and in BN v4.5, these probabilities are very

low: 3% and 0% respectively. Fig 7 presents the BN predicted probabilities of clinically-con-

firmed bacterial pneumonia for every pneumonia episode for children in the cohort, and com-

pares these against their final diagnosis. The graphs represent four input scenarios (a-d), each

providing more information to the model than its preceding scenario, which approximately

replicate how information may chronologically become available in clinical practice, serving

also as examples of potential time points at which the BN can be applied for decision support:

(a) provides the model with available basic background factors of the partipants; these can

include age group, childcare days per week, chronic respiratory disease, ethnicity, influenza

season, prematurity, smoker in the household, impaired immunity, influenza vaccine,

pneumococcal vaccine, and previous significant infection.

(b) uses the information in (a) plus signs, symptoms and interventions if reported; these can

include duration of symptom/s onset, rhinorrhoea, cough, respiratory rate, oxygen satura-

tion, breathing difficulty, crackles, wheezing, (parent-reported) fever, highest temperature,

chill, sweats, irritability, vomiting, diarrhoea, reduced oral intake, lethargy, chest pain,

abdominal pain, other pain, earache, sore throat, headache, rash, (prior) antibiotic expo-

sure, type of oxygen, hospital transfer, and (decision to) perform blood culture.

(c) uses information in (b) plus any detection (or no detection) of respiratory pathogens in the

nasopharynx; these can include RSV, influenza, HMPV, parainfluenza, mycoplasma, and

any typical bacteria.

(d) includes (c) plus all other available results; these can include C-reactive proteins (CRP),

white cell count (WCC), and neutrophil proportion (of total WCC).

Graphs that show a strong overlap (such as in Fig 7a) indicate the model is only able to

achieve weak discrimination between bacterial diagnoses and others. However, as further

information is provided (through scenarios (b), (c) and (d)), the discrimination improves, as

evidenced by both the graphs and the improving AUROC scores. In contrast, the log score

does not improve over the first 3 scenarios; coupled with the improving AUROC, this suggests

the initial probabilistic prediction is already quite close to the true class. Log loss does improve

in the final scenario, as does AUROC again and the greatest discrimination is visible in this
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graph. Table 1 additionally presents the evaluation metrics for other observable targets that are

also close surrogates of the (latent) causative pathogen for pneumonia (the primary target for

prediction), including pleural effusion, positive blood culture result, and the detection of

viruses or mycoplasma in the nasopharynx. As expected we see improved performance in pre-

dicting these variables as more observations are entered in the input scenarios, confirming

that the model is likely to behave in a reasonable way when predicting the primary target.

From a clinical decision-making perspective, a model needs to provide predictions that

trade-off false positive and false negative rates (FPR and FNR, respectively). More specifically,

such a trade-off needs to be defined under a particular decision-making context or, in other

words, alternative FPR/FNR trade-off preferences. Table 2 shows how the desirable threshold

in predicting a target variable may vary greatly under different input scenarios and different

FPR/FNR trade-off preferences—i.e., different relative weightings of the consequences of false

positive versus false negative predictions. For example, when FPR and FNR are weighted

equally, lower thresholds help to simultaneously minimise FPR and FNR when more informa-

tion becomes available for input scenarios (c) and (d). Under the same input scenarios, the

preferred threshold decreases further as higher weight is assigned to FNR.

Fig 7. The performance of BN v4.5. Predicted probabilities of clinically-confirmed bacterial pneumonia are compared with the final observations

(orange if yes) for four input scenarios, with mean log loss and AUROC based on 10-fold cross-validation. For each scenario, available information

from each participant was entered as input for the BN to predict the clinically-confirmed bacterial pneumonia.

https://doi.org/10.1371/journal.pcbi.1010967.g007
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We varied relevant parameters by 20% to investigate how various factors affect the pre-

dicted probability of typical bacterial pneumonia (24) which is determininistically related to

the bacterial state of the causative pathogen for pneumonia (25) (Fig 8). Three groups of vari-

ables were investigated, and the target prediction is most sensitive to parameters describing

the pathogenicity of the potential pathogens in causing pneumonia (white), ranging from 12%

to 50%. Varying the prevalence of various pathogens in the nasopharynx caused the predicted

probability of the involvement of typical bacteria to vary from 22% to 30% (yellow). Varying

Table 1. The performance of BN v4.5 in predicting a range of evaluation targets under different input scenarios, in the form of mean log loss and AUROC based on

10-fold cross-validation. Note when the prediction targets themselves were included as observed variables in the corresponding input scenario, we removed them from

the list of input variables. For example, no prediction about RSV in nasopharynx under input scenario (c) is made (and hence shown as NA) because RSV status is already

known in that scenario. Raw results and scripts for generating these metrics can be accessed via Open Science Framework (https://osf.io/m97vb/).

Evaluation target AUROC Log loss

Input scenario (a) (b) (c) (d) (a) (b) (c) (d)

Clinically-confirmed bacterial pneumonia (28) 0.58 0.70 0.71 0.80 0.36 0.36 0.35 0.31

Pleural effusion (46) 0.58 0.73 0.73 0.81 0.35 0.33 0.33 0.30

Positive blood culture (53) 0.73 0.74 0.80 0.91 0.67 0.08 0.08 0.06

RSV in nasopharynx (16) 0.74 0.75 NA 0.75 0.48 0.51 NA 0.52

Influenza in nasopharynx (15) 0.52 0.56 NA 0.56 0.29 0.28 NA 0.28

HMPV in nasopharynx (17) 0.53 0.54 NA 0.54 0.36 0.36 NA 0.36

Parainfluenza in nasopharynx (18) 0.45 0.49 NA 0.52 0.25 0.25 NA 0.24

Mycoplasma in nasopharynx (19) 0.67 0.73 NA 0.73 0.33 0.32 NA 0.32

https://doi.org/10.1371/journal.pcbi.1010967.t001

Table 2. The optimal performance of the BN in predicting clinically-confirmed bacterial pneumonia (28) under different input scenarios and different FPR/FNR

trade-off preferences (P1-P4). Specifically, we defined optimal based on a minimised weighted sum of FPR and FNR across the 10-fold cross-validation results. For each

input scenario and FPR/FNR trade-off preference, we present here the threshold used when the optimal performance is achieved, and its associated false positives (FP),

false negatives (FN), sensitivity and specificity. Note that there is a total of 25 positive observations of clinically-confirmed bacterial pneumonia in our cohort of 230 cases

of X-ray confirmed pneumonia. Raw results and scripts for generating these metrics can be accessed via Open Science Framework (https://osf.io/m97vb/).

Evaluation metric \ Input scenario (a) (b) (c) (d)

P1: FPR and FNR are equally weighted threshold (>) 0.069 0.096 0.058 0.035

FP 174 39 57 69

FN 2 11 9 3

sensitivity 92% 56% 64% 88%

specificity 15% 81% 72% 66%

P2: FNR has a weight that is 3 × FPR threshold (>) 0.039 0.006 0.008 0.035

FP 202 188 151 69

FN 0 0 1 3

sensitivity 100% 100% 96% 88%

specificity 1% 8% 26% 66%

P3: FNR has a weight that is 5 × FPR threshold (>) 0.039 0.006 0.006 0.013

FP 202 188 187 121

FN 0 0 0 1

sensitivity 100% 100% 100% 96%

specificity 1% 8% 9% 41%

P4: FNR has a weight that is 10 × FPR threshold (>) 0.039 0.006 0.006 0.005

FP 202 188 187 185

FN 0 0 0 0

sensitivity 100% 100% 100% 100%

specificity 1% 8% 9% 10%

https://doi.org/10.1371/journal.pcbi.1010967.t002
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the assumptions regarding the latent epidemiological concepts (e.g., level of exposure) had a

small influence on the probability of involvement of typical bacteria (25% to 27%) (blue).

The use of KL divergence analysis (S2 Table) allowed us to highlight the discrepancies

between prior and posterior CPTs in particular among the hybrid expert-data variables; i.e.,

which expert-informed CPTs were shifted the most by the data. We noticed that both viral-

like pneumonia (23) and typical bacterial pneumonia (24) rank highly among the hybrid

expert-data variables. As an interesting example, given the presence of a nasopharynx infec-

tion, but negative detections for all modelled viral-like pathogens in the nasopharynx, the

probability of a viral pneumonia still shifts from 11% to 98% (keeping in mind the model is

being asked to predict a pneumonia of some sort). This implies a potentially more significant

role for other respiratory viruses among children with X-ray confirmed pneumonia.

3.4 Demonstrative clinical scenarios

When serving as a clinical decision support tool, the available background factors, clinical

observations and investigation results would be entered as model inputs for making inferences

about causative pathogen for pneumonia (25) in a particular episode. We presented three

scenarios to demonstrate the potential use of this model in a clinical context Figs (9)–(11). Pro-

posed and reviewed by domain experts, the selected variables in these scenarios are not those

you would specifically measure or look for when suspecting bacterial pneumonia—rather this

is information commonly present when clinicians need to make a diagnosis of bacterial pneu-

monia and decide on interventions such as antibiotic use.

The BN predicted probability of typical bacterial pneumonia is 28% for the cohort of chil-

dren with X-ray confirmed pneumonia (labelled in the blue box at the top right corner). For

each scenario, this prediction is updated, branching in multiple possible ways that are condi-

tional on information that may become available over time along the child’s clinical course

and thus act as potential time points when the BN can be applied to make predictions for

Fig 8. Sensitivity analysis, BN v4.5. Relevant parameters were varied by 20% to investigate how they affected the

predicted probability of involvement of typical bacteria. This target prediction was most sensitive to the pathogenicity

of potential pathogens in causing pneumonia (white), followed by the prevalence of various pathogens in nasopharynx

(yellow), and was least sensitive to the latent epidemiological concepts (blue). CPTs that were varied in the

pathogenicity group include those for both viral-like pneumonia (23) and typical bacterial pneumonia (24). The

pathogens in nasopharynx group involve CPTs for RSV in nasopharynx (16), Influenza in nasopharynx (15), HMPV

in nasopharynx (17), Parainfluenza in nasopharynx (18), Mycoplasma in nasopharynx (19) and bacteria in

nasopharynx (20). And the latent concepts group involved CPTs for level of exposure (12), susceptibility to

colonisation (13) and susceptibility to progression (14).

https://doi.org/10.1371/journal.pcbi.1010967.g008
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decision support. In parentheses we provide the change in the target prediction in relation to

the cohort average; we use red text to indicate if the predicted probability of typical bacterial

pneumonia is higher than the cohort average, and use green text to indicate predicted target

probabilities which are at least 50% lower than the cohort average.

Fig 9 presents a scenario in which the BN predicts a low probability (13%) of a typical bacte-

rial cause of pneumonia for a 4 month old infant with X-ray confirmed pneumonia with mod-

erate signs and symptoms (i.e., highest temperature of 38.5 degrees Celcius, runny nose and

cough). The predicted probability remains low unless both the CRP and WCC are high (at

least 100 mg/L and 12 × 109/L, respectively). In contrast, if instead a 9 year old (school-aged)

child with X-ray confirmed pneumonia presents various signs and symptoms (Fig 10), the

probability of typical bacterial pneumonia is predicted to be higher and similar to the cohort

average. The predicted probability of typical bacterial pneumonia is almost doubled if the

Fig 9. Clinical scenario 1, BN v4.5. This use case presents an infant (age group (1)) with X-ray confirmed pneumonia, moderately high temperature

(highest temperature (37)), cough (29) and runny nose (rhinorrhoea (31)). The BN predicts a low probability of typical bacterial pneumonia for this

child (causative pathogen for pneumonia (25)), and a reported history of diarrhoea (40) alone does not largely affect the prediction. The target

prediction remains low unless both the C-reactive proteins (55) and white cells count (56) are moderately elevated.

https://doi.org/10.1371/journal.pcbi.1010967.g009

Fig 10. Clinical scenario 2, BN v4.5. This scenario presents a school-aged (age group (1)) child with X-ray confirmed pneumonia and with moderately

high temperature (highest temperature (37)), runny nose (rhinorrhoea (31)) and high respiratory rate (53). The BN predicts a 22% probability of

typical bacterial pneumonia for this child (causative pathogen for pneumonia (25)), and this prediction increases to 42% if the child has no breathing

difficulty (49). Moderate and very high C-reactive proteins (55) and white cells count (56) further increase the probability of a typical bacterial cause

for this pneumonia.

https://doi.org/10.1371/journal.pcbi.1010967.g010
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child has no breathing difficulty, and a moderately high CRP (40 mg/L) can be indicative for a

bacterial cause. In other words, the significance of a raised CRP varies under various scenarios.

The third scenario (Fig 11) presents a 3.5 year old (pre-school aged) child with X-ray con-

firmed pneumonia and very high temperature during the influenza season. The probability of

typical bacterial pneumonia increases if the child is under-vaccinated for pneumococcus,

regardless of whether RSV is detected in their nasopharynx. If fully-vaccinated, the presence of

wheezing will lead to a decrease in the predicted probability of typical bacterial pneumonia,

and this prediction will drop to only 4% if RSV is detected in the child’s nasopharynx.

4 Discussion

The diagnostic challenge of differentiating bacterial from non-bacterial pneumonia is the

main driver of antibiotic use for treating pneumonia in children. We have built a causal BN

that captures the complex epidemiological context of paediatric pneumonia and how this gives

rise to the variable clinical manifestations observed in the hospital setting. Based on the com-

bined use of domain expert knowledge and data, the model was designed to apply to a cohort

of children with X-ray confirmed pneumonia who presented to a tertiary paediatric hospital in

Australia. The resulting BN offers explainable and quantitative predictions on a range of vari-

ables of interest, including the causative pathogen for pneumonia, the clinically-confirmed

bacterial pneumonia, the detection of respiratory pathogens in the nasopharynx, and the clini-

cal phenotype of a pneumonia episode. Because the BN is causal, it serves as a starting point to

integrate the effects of further preventative or interventional measures, potentially leading to

future insights into how public health strategies may drive the clinical epidemiology of pneu-

monia, or how clinical antibiotic use may alter the disease progression of a given episode.

We used AUROC and log loss to quantitatively assess the model’s performance in predict-

ing the directly observable variables like the diagnosis of pleural effusion, positive blood cul-

ture and detection of RSV and mycoplasma in the nasopharynx. Based on 10-fold cross-

validation, the model performance steadily improved as more information was entered

(Table 1). We specifically highlight that a desirable quantitative threshold for practical use is

very dependent upon different input scenarios and FPR/FNR trade-off preferences, providing

Fig 11. Clinical scenario 3, BN v4.5. This scenario shows a pre-school aged (age group (1)) child with X-ray confirmed pneumonia and very high

temperature (highest temperature (37)) during the influenza season (9). The probability of typical bacterial pneumonia (causative pathogen for

pneumonia (25)) increases if the child is under-vaccinated for pneumococcus (Pneumococcal vaccine (10)), regardless of whether RSV is detected

from their nasopharynx or not (RSV in nasopharynx (16)). If fully-vaccinated, the presence of wheezing (43) will lead to a decrease in the predicted

probability of typical bacterial pneumonia, and this prediction will drop to only 4% if RSV is detected in the child’s nasopharynx. Other variables

involved in this scenario are crackles (44), vomiting (39) and diarrhoea (40).

https://doi.org/10.1371/journal.pcbi.1010967.g011
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insight into how computational model predictions may be translated to actionable decisions in

practice. Qualitatively, we used commonly encountered scenarios to assess the potential use-

fulness of the model outputs in various clinical pictures. To our knowledge, this is the first

causal model developed to help determine the causative pathogen for paediatric pneumonia.

Our model framework and the methodological approach can be adapted beyond our context

to broad respiratory infections and geographical and healthcare settings.

4.1 Using latent concepts to reveal the epidemiological context

When a child has X-ray confirmed pneumonia, the causative pathogen for pneumonia usually

remains unobserved, i.e., latent. Patient background factors such as basic demographics, sea-

sonality, vaccination and comorbidities can help predict the latent causative pathogen because

they often causally influence the presence of a respiratory pathogen in the child’s nasopharynx

or respiratory tract which in turn predisposes to pneumonia. For example, RSV is more preva-

lent in the winter in temperate environments, owing to its elevated circulation in the commu-

nity, and bacterial infection is more probable in a younger child due to the interplay between

their developing immunity and respiratory microbiota [44, 45]. The difficulties faced by clini-

cians arises from the dynamic and complex interactions amongst these factors, as we saw in

Fig 11 for a young child who presents to hospital in the influenza season.

We addressed this challenge by firstly organising relevant variables under a causal frame-

work (Fig 4), and introducing several latent concepts such as the level of exposure and the sus-

ceptibility of a child to colonisation. This approach helped explain the potentially complex role

of each variable in the problem domain. For example, older children may have lower suscepti-

bility to bacterial colonisation as well as to pneumonia progression, with both leading to a

reduced probability of typical bacterial pneumonia [45]. However, they are also more likely to

have a high exposure through attendance at childcare or school [46], leading to an increase in

the nasopharyngeal presence of all pathogens, thereby increasing the potential for subsequent

infection. Being explicit about these underlying mechanisms allowed us to capture and under-

stand the role of each factor in the context of each pneumonia episode, which in turn gave us

further insight into the epidemiological context and more precise predictions of the causative

pathogen for pneumonia.

4.2 Mapping clinical and laboratory evidence to explicit causal paths

Model predictions can be further improved by utilising additional information which is likely

to be available shortly after presentation, namely, clinical observations and laboratory investi-

gation results. By modelling the overlap and divergence in the pathophysiological pathways

indicated by each piece of clinical and laboratory evidence (Fig 6), the causal BN approach can

estimate the episode-specific probability of each causative pathogen based on any input vari-

ables available. As illustrated in clinical scenario 1 (Fig 9), while diarrhoea can be a feature of

either viral or bacterial pneumonia, knowing about diarrhoea alone does not greatly affect the

predicted probability of typical bacterial pneumonia. However, when additional information

such as CRP and WCC becomes available, the prediction can vary from close to 0% up to 82%.

A challenge faced by clinicians is the variable predictive value of specific clinical and labora-

tory observations when the underlying epidemiology changes [15]. More specifically, typical

bacterial pneumonia is more likely to drive elevated WCC and CRP [35], however, elevated

biomarkers can also be caused by viral pathogens, especially when disease manifestation is

severe, leading to reduced specificity for bacterial infection. Our BN addressed this issue by

introducing a variable to summarise the clinical phenotype for each episode, which functioned

to separate the influence of the causative pathogen from the clinical progression of the
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presenting episode based on the patient’s susceptibility to progression and the duration and

severity of the presenting illness. This was illustrated in Scenario 1 (Fig 9) and Scenario 2 (Fig

10), in which the same blood results could lead to significantly different predictions of typical

bacterial pneumonia for the two demographically and clinically distinct presenting episodes.

4.3 The challenge and need to better understand pathogenicity

It became apparent since early in the model development (after Workshop 1) that the pathoge-

nicity of different organisms plays a central role in driving the probability that a pathogen is

causative. There are a large number of organisms (viral and bacterial) that are capable of caus-

ing pneumonia, while there are also frequent detections of multiple potentially pathogenic

organisms in the nasopharynx. Hence, it is important to understand the prevalence of relevant

organisms in the respiratory tract (including the nasopharynx) as well as the probability of

being causative of pneumonia given they are present there. These issues affect how the model

should be structured (e.g., to what extent we should separate or group pathogens) and how we

should parameterise the model (e.g., given the co-presence of more than one pathogen, which

one is the more likely to be the causative agent). Many of these issues remain the subject of

debate and ultimately unresolved by the scientific community [47].

We designed a series of survey questions to elicit the current understanding and knowledge

of domain experts (Survey 2, 3 and 5, see S1 File, Section C, D and F). Finding the best way to

frame questions proved challenging given the complexity of the problem domain. Conse-

quently, we explored a variety of approaches based on modelling needs, facilitated by graphical

illustration, data visualisation, and various question formats. This process also helped clarify

the modelling requirements themselves, helping us to better manage our current imperfect

understanding of the problem domain. In the areas of greatest need, sensitivity analyses were

subsequently conducted to understand how much the uncertainty in our understanding could

impact on the BN predicted outcomes (Fig 8).

4.4 Implications for providing decision support for antibiotic prescription

Among the 230 children enrolled in our cohort of X-ray confirmed pneumonia, 47% were

exposed to recent antibiotic use prior to the point of hospital admission when baseline study

data were collected. Of these, 99% eventually received antibiotics during their hospital stay

(post-enrolment), although only 11% had clinically-confirmed bacterial pneumonia [35]. This

suggests that clinicians rarely have the information they need to have confidence to withhold

antibiotics. Applied to this cohort, the resulting BN predicted that 28% had typical bacterial

pneumonia (either bacterial or viral-bacterial co-infection), indicating the potential to greatly

rationalise use of antibiotics. Nevertheless, translating mathematical predictions into better

clinical decision-making is not straightforward, as the the best practical use of a model is

affected by its ability to predict the real world, i.e., by its performance characteristics. To this

end, we showed the most desirable model output threshold for choosing an action can be very

sensitive to different input scenarios and trade-off preferences (Table 2).

From a clinical decision making perspective, the choice of model threshold for guiding anti-

biotic use should take into account the values (utilities or preferences) that one attaches to pos-

sible consequences of their decision, e.g., how much clinicians are willing to accept false

positives (i.e., over-treating a non-bacterial infection with antibiotics) in order to avoid false

negatives (i.e., missing/delaying antibiotic therapy for a bacterial infection). Although satisfac-

tory numeric predictive performance has been achieved by our BN in predicting directly

observable variables, including an AUROC of 0.8 in predicting clinically-confirmed bacterial

pneumonia with sensitivity 88% and specificity 66%, we can only assess the acceptability of
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these performance characteristics within the context of specific input scenarios and trade-off

preferences (i.e., preferences over the trade-off between FPR and FNR). Looking at Table 2 on

this basis, with the clinical data corresponding to FPR/FNR trade-off preference P3, in column

(a) the model predicts a positive result in 202 of 205 cases that were not clinically-confirmed

bacterial pneumonia. Hence, almost all the truly negative cases would receive antibiotics, sug-

gesting little additional value over current clinical practice (recalling that in our cohort, 99%

received antibiotics). Conversely, column (d) shows that, with more information in the input

scenario, the model predicts a negative result for 84 of the 205 cases without clinically-con-

firmed bacterial pneumonia, suggesting the model may help avoid up to 41% of unnecessary

antibiotic prescriptions. Of note, clinicians may also want to adjust their FPR/FNR trade-off

preference based on a specific patient’s circumstances. For example, they may reduce the

acceptable FNR for subgroups that are more vulnerable to potentially severe consequences of a

false negative result for bacterial pneumonia (such as neonates); or they may accept a higher

FNR for older children where close follow-up is possible.

The model’s behaviour in predicting the (latent) causative pathogens for pneumonia was

qualitatively reviewed in various forms, including in Workshops 3 and 4 and Survey 4 (S1 File,

Section E). The review outcomes from our experts from diverse domain areas provided confi-

dence in the potential clinical value that this BN offers as a decision support tool. The three

scenarios in §3.4 provide an insight into how we envisage the model outputs could support

diagnostic decisions under various clinical contexts, leading to numerous questions about how

model outputs should be presented. Even if causal models have good performance and pro-

duce explainable outputs, they will not be useful tools unless their outputs can be presented in

a form that end-users can understand, interpret and use. The barriers to implementation and

uptake that decision support tools including BNs face are widely reported [48, 49].

4.5 Study limitations and future direction

The BN needs further validation before it can be clinically implemented, particularly examin-

ing the performance of the model in additional cohorts that differ in both key contextual fac-

tors and in the availability and operational definitions of superficially equivalent variables.

Examples of such differences include: whether the definition of pneumonia is distinct across

studies; whether a different spectrum of respiratory infections are involved; and how the clini-

cal epidemiology differs based on the geographically distinct transmission dynamics or varia-

tions across healthcare systems. In particular, we highlight the important distinction between

variable definitions (or in this case a BN dictionary) and a data dictionary. A variable defini-

tion would (usually) not change if it has been well designed to describe a certain mechanistic

process in a problem domain; such a variable could then be readily mapped to an external data-

set that intends to capture observations about the very same mechanistic process. Any signifi-

cant discrepancy between a variable definition and an associated data definition should lead to

a review and potential revision of the model structure with respect to the original modelling

purpose, with the aim to improve the adaptability of the model, the interpretation of model

performance once adapted, and the development of the BN for future adaptation and imple-

mentation. Several measures were taken to address the overfitting problem, including the

10-fold cross-validation, expert-informed priors and the KL divergence assessment. We

acknowledge that the strongest test of overfitting must make use of an external dataset; how-

ever, the KL divergence results provide a unique insight into where such overfitting may be

present in the model, providing a clear focus for any future evaluation that assesses the model

on external datasets.
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It is important to note there is a distinction between the actual presence of an organism at a

body site and its successful detection by sampling at that body site; we only ever know about

the former via evidence of the latter. In the model, we used the detection of organisms as a sur-

rogate for their actual presence in the nasopharynx, in order to reduce the number of latent

variables. For our model development, these data were collected prospectively and PCR testing

was performed systematically to identify relevant pathogens over and above the routine clinical

practice, generating high quality information with little missing data. However, the quality of

model predictions will not be as robust if data from routine clinical review and investigation

are used alone. Future work should consider the sensitivity and specificity of the laboratory

techniques used to capture this information.

The BN can be further improved using richer data with a higher level of granularity. For

example, information on the severity of reported symptoms was limited. We would like to

further improve the classification of pneumonia (or reduce potential mis-classification due

to potential limitations of assessment techniques such as X-rays) by capturing a more com-

prehensive spectrum of lower respiratory tract infections such as bronchitis and bronchioli-

tis, and in particular how they should be explicitly mapped to other model variables.

Furthermore, other comorbidities were identified but are yet to be included in the model,

such as the history of neurological conditions that may affect susceptibility to colonisation

and disease progression. There is also the potential to include further information on the use

of intravenous fluid, intensive care management and patient progression over time, which

would enable the model to predict the likely effects of specific interventions. Integrating

such models into electronic medical record systems to enable efficient data capture is an

important future direction, as it would significantly improve the ability to evaluate and even-

tually trial, maintain and use these models and, ultimately, to derive the most value from

them.
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