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Abstract

Background: Ordinal outcomes combine multiple distinct ordered patient states into a
single endpoint and are commonly analysed using proportional odds (PO) models in
clinical trials. When using a Bayesian approach, it is not obvious what the influence of a
‘non-informative’ prior is in the analysis of a fixed design or on early stopping decisions
in adaptive designs.

Methods: This study compares different non-informative prior specifications for the
Bayesian PO model in the context of both a two-arm trial with a fixed design and an
adaptive design with an early stopping rule. We conducted an extensive simulation
study, varying the effect size, sample size, number of categories and distribution of the
control arm probabilities. The effect of the prior specifications is also compared using
data from the Australian COVID-19 Trial.

Results: Our findings indicate that the choice of prior specification can introduce bias in
the estimation of the treatment effect, particularly when control arm probabilities are
right-skewed. The R-square prior specification resulted in the smallest bias and
increased the likelihood of appropriately stopping early when there was a treatment
effect. However, this specification exhibited larger biases when control arm probabilities
were U-shaped when there was an early stopping rule. Dirichlet priors with
concentration parameters close to zero resulted in the smallest bias when probabilities
were right-skewed in the control arm, but were more likely to inappropriately stop early
for superiority when there was no treatment effect and an early stopping rule.

Conclusions: The specification of non-informative priors in Bayesian adaptive trials with
ordinal outcomes has implications for treatment effect estimation and early stopping
decisions. We recommend the careful selection of priors that consider the possible
distribution of control arm probabilities and that sensitivity analyses to the prior be
conducted.

Keywords: ordinal outcome; proportional odds model; adaptive trial; non-informative priors;
randomised controlled trials; simulation study; Bayesian
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Introduction

Randomised controlled trials (RCTs) aim to answer causal questions by comparing
outcomes from participants randomised between a control treatment and at least
one intervention. One type of outcome that is becoming increasingly popular in tri-
als is an ordinal outcome [1]. Ordinal outcomes combine multiple distinct ordered
patient states into a single endpoint. The categories that make up the ordinal out-
come must be monotonically ordered but there may not necessarily be an equal
‘distance’ between proximate categories. Although ordinal outcomes may be less
familiar to researchers than other outcome types, they are commonly used in many
medical settings. For example, the modified-Rankin scale [2] is typically used to
measure outcomes in patients who suffer from stroke or traumatic brain injury with
categories ranging from 0 (no symptoms) and 6 (dead), with increasing severity
of disability in between. Ordinal outcomes became particularly prominent during
the initial stages of the COVID-19 pandemic, when the World Health Organization
developed the Clinical Progression Scale to measure distinguished health states for
patients with COVID-19 [3] that was anchored at asymptomatic and uninfected,
and death. Despite being relatively common, there is still a lack of understanding
of the interpretation and appropriate analyses of ordinal outcomes in RCTs [1].

There are many approaches available to analyse ordinal outcomes in RCTs. The
most common is a proportional odds (PO) model, which estimates a proportional
(or common) odds ratio (OR) across each binary split (or ‘cut-point’) of the ordinal
scale [1, 4-6]. The proportional OR represents the size of the shift in the distribution
of the ordinal scale towards a favourable (or unfavourable) outcome for an inter-
vention relative to the comparator, which can be used to summarise the efficacy of
an intervention.

Alongside the increased use of ordinal outcomes, the COVID-19 pandemic also ne-
cessitated efficient trial designs that could expedite treatment decisions [7-9]. This
included the use of adaptive designs that allow prespecified adaptations or changes
to the design based on the accruing data from the trial. Some examples of adap-
tations that can be incorporated include early stopping, sample size re-estimation,
response adaptive randomisation, subgroup selection, or some combination thereof
[10].

Early stopping rules, particularly for superiority, are commonly used in trials that
use ordinal outcomes [1]. Early stopping for superiority allows a trial to be stopped
following a pre-specified interim analysis, if there is sufficient evidence that an inter-
vention is superior to the comparator (or sometimes, other interventions), avoiding
future patients being allocated to inferior treatments. A trial with such stopping
rules can reduce the anticipated duration and sample size compared to a trial with
a fixed design [11].

Bayesian methods are commonly used for analysing adaptive trials that allow for
early stopping since they are naturally suited to multiple looks at the data, com-
plicated models can be fit fairly easily, and prior distributions provide a principled
way of updating inferences at each interim analysis [12-14]. In Bayesian inference,
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the data are combined with prior distributions or beliefs about the parameters of
interest to obtain a posterior distribution for the parameters [15]. The choice of
prior distribution has a direct influence on the posterior distribution, particularly if
an informative prior is chosen or the sample size is small, which can in turn affect
the final estimate of the treatment effect. In an adaptive trial, the decision to stop
a trial early for superiority is typically guided by the posterior probability that the
intervention is superior to one or more comparators which can again be affected
by the choice of prior. For example, if an informative prior strongly favours the
intervention over the comparator, early stopping decisions may be (possibly inap-
propriately) accelerated which would increase the risk of stopping for success even
if the intervention is not superior.

Non-informative priors are often used in the analysis of trials to reflect clinical
equipoise and to allow the inference to be guided by the data. There are, however,
numerous non-informative priors that can be used for the treatment effect and any
other parameters in the model, and it is often unclear how ‘non-informative’ these
priors may be for a complex analysis model, particularly in the analysis of ordinal
outcomes. For example, although a diffuse prior centered around no treatment ef-
fect, such as a Normal(0, o) prior distribution with large o, may be a natural choice
for the treatment effect parameter, the influence on the posterior distribution is
not well understood in the context of a PO model. For large o, the inverse-logit
transformation of the prior distribution pushes the mass towards the lower and
upper bounds, creating a ‘bathtub’ like distribution. Instead, specifying a smaller
o may be more appropriate. Furthermore, PO models for ordinal outcomes use
ordered cut-point parameters to distinguish between consecutive (outcome) cate-
gories that represent cumulative log-odds for the control group which also require
prior distributions. There has been some methodological research surrounding the
choice of priors however, this research has primarily focused on the choice for the
prior when the outcome is continuous. In the context of PO models, it has been
suggested that for the model cut-points a prior should be chosen that preserves the
parameter ordering, such as a Dirichlet distribution [16, 17] or Normal distribution.
However the impact that different non-informative priors have on the estimation
of the treatment effect has not been explored in trial settings. Given the increased
use of ordinal outcomes in trials that use Bayesian PO models and the numerous
possible choices of prior distributions available, it is imperative to understand the
impact that non-informative priors have on the posterior distribution for the treat-
ment effect and whether they are truly ‘non-informative’, particularly in trials with
interim analyses where the sample size may be small.

In this paper, we aim to evaluate the effect of different non-informative prior spec-
ifications on the estimation of the treatment effect from a Bayesian PO model. We
focus on the context of a two-arm trial with 1:1 ratio of allocation that uses an
ordinal outcome under 1) a fixed design that has a single analysis at the end of
the study and, 2) an adaptive design with an early stopping rule for superiority
at a single interim analysis. This is investigated using a simulation study and a
case study of the Australasian COVID-19 Trial (ASCOT) trial data. As part of the
simulation study we assess the impact of the following factors on the estimation of
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the treatment effect and posterior probability of intervention superiority where the
target estimand is a proportional OR:

Magnitude and direction of the proportional OR.
Trial sample size.
Number of categories of the ordinal outcome.

N

Distribution of the control arm outcome probabilities.

This paper proceeds as follows: we first define key notation, provide an overview
of the PO model and the estimand of interest, before outlining candidate non-
informative prior distributions. Next we describe and present the results of the
simulation study followed by the results of the ASCOT case study [18]. We con-
clude by summarising the key results and provide guidance for specifying priors for
Bayesian PO models.

Methods

Notation

The target estimand is the proportional OR that represents the relative increase in
odds of a more favourable outcome for an intervention compared to a control arm.
We start by outlining our notation:

e J is the number of categories in the ordinal outcome;

e [ is the proportional log-OR;

o b€ {c,t} represents the control arm ¢ and intervention arm t;

e 7y is a vector of ordinal outcome category probabilities for participants re-
ceiving arm b. That is:

T = (To1, T, - -+ T ) (1)

o a = (ag,...,ay) is a vector of model intercepts representing the cumulative
log-odds for the control group;

e a = 1,2 indicate the interim and final analysis times;

e Y, is the vector of observed ordinal outcome for participants n = 1,2, ..., n,
allocated to arm b at analysis a.

o x; € {0,1} is an indicator denoting assignment to intervention, where 0 =

control and 1 = intervention.

Proportional odds model

The PO model can be used to estimate a treatment effect for an ordinal outcome
with more than two categories. The model estimates a proportional log-OR (f)
that is assumed to be constant across all binary splits of the ordinal scale, where
for j=2,3,...,J:
P(Yab 2

log P(Yab<;; = logit [P(Yay > j)] = aj + Bx o
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When using this model for Bayesian inference, a prior must be specified for the
baseline cumulative log-odds a and for the proportional log-OR S. We outline
some options of possible priors for these parameters in a PO model in the following
section.

Specification of non-informative priors for 5

A non-informative prior on the treatment effect parameter 5 is usually specified
to be symmetric around no effect (i.e., zero) with sufficient variability to encapsu-
late the appropriate range of potential effects if a non-informative prior is desired
[19-21]. One common choice is a Normal distribution with a large variance pa-
rameter [1]. Although this prior appears to be a reasonable choice on the log-odds
scale, when transforming the distribution using the inverse-logit transformation,
the mass is pushed towards the bounds at zero and one, creating a ‘bathtub’ like
distribution. Instead, using a smaller variance parameter, although appearing more
informative, may still be rather non-informative. Other symmetric and potentially
non-informative prior distributions that could be specified for the treatment effect
include the Student-t distribution [21] (which approaches the shape of a Normal dis-
tribution when the degrees of freedom becomes large but has fatter tails with smaller
degrees of freedom to reflect a wider range of prior beliefs), a Cauchy distribution (a
t-distribution with one degree of freedom), or a Laplace distribution. The Laplace
distribution is also known as the double-exponential distribution and is symmetric
with a sharp peak at its centre and can be motivated as a scale mixture of Normal
distributions. This distribution has fairly flat tails to mimic a non-informative prior
when an appropriate value is specified for the standard deviation [22].

An alternative prior specification for the treatment effect parameter 8 is to put a
prior on the beliefs about the location of the R? [23] (the proportion of variance in
the ordinal outcome that is explained by the intervention) assuming a continuous
latent variable specification for the ordinal outcome. This involves putting a prior
on the location of R?, which can be achieved using a Beta distribution where the
first shape hyperparameter is set to equal to half the number of predictors in the
model [23] and the second shape hyperparameter is greater than zero. When both
shape hyperparameters are equal (in this case, also 0.5), the prior mean and median
of the R? is 0.5 and the distribution is symmetric. Like the normal prior with a large
variance, this specification pushes most of the probability density toward zero and
one. Choosing a value of the second shape hyperparameter that is not close to zero
or one would be a reasonable diffuse prior since the prior belief does not hinge on
whether the intervention has a strong effect on the outcome (if close to one), and
whether there is high certainty that the intervention has no effect on the outcome
(if close to zero). It can be unclear how to specify a prior value for the R? in a PO
model as R? refers to the proportion of variance in the underlying continuous latent
variable that is attributable to the predictors under a linear model, and typically, the
R? is lower in a PO model compared to a linear model with a continuous outcome.
However, the smaller the R?, the smaller the prior correlations among the ordinal
outcome and intervention variable(s) are, and the more concentrated near zero the
prior distribution is for the regression coefficient (i.e. the proportional log-OR).
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In the current study, we compare the estimation performance of the PO model using
the following priors on :

B~ N(u=0,02 = 1002)

B~ N(p=0,0%=252)

B ~ t(df =1) (equivalent to a Cauchy distribution)

B ~ Laplace(p = 0), with SD = 100

B ~ Laplace(u = 0), with SD = 2.5

Mean R? = 0.5, equivalent to a Beta(0.5, 0.5) distribution

S U s W N

Specification of non-informative priors for

Although we would expect the prior used for the treatment effect to have the largest
effect on the posterior distribution for the treatment effect, the prior used for the
cut-points may also be important. The Dirichlet distribution is a natural choice for
the (implicit) prior on the model cut-points because the concentration parameters
can be interpreted as prior counts, i.e. prior probabilities for each of the J cate-
gories at the covariate means [19]. For instance, if o; = 1 for all j € {1,2,...,J},
the Dirichlet prior is uniformly distributed across the categories. This implies a
prior belief of one observation in each of the J ordinal categories when the pre-
dictors are at their sample means, indicating very weak prior knowledge that no
category has probability zero. The Dirichlet prior distribution may be appropriate
when modeling ordinal outcomes given its multivariate generalisation of the Beta
distribution and that it is the conjugate prior of the categorical and multinomial dis-
tribution [24]. An alternative choice is Jeffrey’s fixed reference prior where a; = 0.5
forall j € {1,2,...,J} [17]. This prior maximises the ‘distance’ (based on the Kull-
back—Leibler divergence, a measure of how one probability distribution is different
to another probability distribution) between the prior and the posterior, implying
that the data has the largest possible effect on the posterior (and that the prior
has the least possible effect on the posterior). An alternative is to specify a normal
distribution for each cut-point that preserves the ordering in the model.

In this paper we investigate the following priors for the intercept terms:

1 Uniform Dirichlet: e« ~ Dir(1) (sets of baseline risk are equally likely for each
category).

Multivariate Jeffrey’s reference prior for the cut-points: a ~ Dir(0.5).

a ~ Dir(0.001).

o~ Dir(%,) (objective reciprocal prior specification)

aj ~ N(0,100%)

T W N

Simulation study

We conducted a simulation study to evaluate the impact that different non-
informative priors for a and 8 have on the estimation of the treatment effect under
a range of distributional, sample size, trial design, and effect size scenarios. In this
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section, we outline the data generating mechanisms, analysis methods, and perfor-

mance measures used in the simulation study.

Data-generating mechanisms

The data generation process assumes a true underlying proportional OR in each
trial. We set up a hypothetical scenario where we emulate a two-arm trial with a
fixed design, and another with a single interim analysis once half of the outcome data
is available with the potential to stop early if the intervention is declared superior.
Intervention assignment was generated using X; ~ Bern(0.5) - representing simple
randomisation with an equal allocation ratio. The ordinal outcome data was then
simulated by taking a random sample from a multinomial distribution for the control
and intervention group respectively given the respective probabilities as described
below. We restrict our focus to ordinal outcomes with J € {4,10,30} categories to
reflect the wide range of ordinal outcomes that are used in practice.

We varied the distribution of the probabilities in each outcome category in the con-
trol group to reflect real-world scenarios. First, we set the probabilities in each out-
come category to follow a skewed relationship as observed in the distribution of two
ordinal outcomes that were both days alive and free of hospitalisation/ventilation
28-days post randomisation respectively in the ASCOT trial. Here, the probabili-
ties were primarily concentrated to categories at the beginning of the outcome scale,
exhibiting positive skewness across the distribution of the categories. Second, we de-
fined probabilities in each outcome category to follow a U-shape distribution which
is commonly observed in stroke trials that use the modified-Rankin scale where
patients tends to fall in either the first two or three categories and the last two
categories (depending upon the population), as was observed in the ESCAPE-NA1
trial [25]. We set probabilities in each category of the ordinal outcome in the control
group by partitioning the sample space of a § ~ Beta(a, ) distribution into J equal
partitions where the control probabilities for each category were set to equal the
cumulative probability in each partition. Finally, we considered a scenario where
the probabilities in each outcome category were equal.

Next we generated the cumulative log-odds for the intervention group assuming
proportional odds, i.e. logit(P(Y > j)) = a;; + 8 where we explored an effect size of
log(OR) = log(1) (no effect), log(1.10) (small effect) and log(1.50) (moderate effect
size) to reflect similar proportional ORs to that observed in the ASCOT trial. The
intervention outcome probabilities 7r; were then calculated using the inverse logit
function. These probabilities along with the control group probabilities were used
to generate the ordinal outcome.

Data was simulated for a total sample size of nops € {100,500} records for each sce-
nario under consideration. For simplicity, we assumed that the outcome is observed
immediately. An interim analysis occurred at an information fraction of one-half,
i.e. at a sample size of 50 or 250. The stopping rule was guided by the Bayesian
posterior probability that the intervention was superior to the control arm. Specifi-
cally, superiority of an intervention was assessed using the posterior probability that
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the proportional log-OR is greater than zero exceeds 0.99 (i.e. P(8 > 0) > 0.99)
at the interim analysis to align with more stringent stopping rules at an interim,
then superiority was triggered and the trial was stopped early at the interim anal-
ysis. If the trial continued to the maximum sample size, superiority was declared if
P(B > 0) > 0.95. For the fixed design, superiority was declared if P(8 > 0) > 0.95.
We note that the two designs are not comparable due to different Type I error
rates, although the objective of this study is not to compare the designs, rather the
impact of using different priors on the treatment effect given the study design. In

total, 108 scenarios were considered in this simulation study.

Analysis methods

We estimated the parameters of the PO model (Equation 2) using Hamiltonian
Monte Carlo (HMC) sampling, a Markov Chain Monte Carlo (MCMC)-sampling-
based algorithm, to obtain the posterior distribution for the treatment effect using
the different prior specifications for a and S outlined above. We initially assess
the impact of changing the prior for the treatment effect § for a fixed prior for a
(o ~ Dir(1)), and then assess the impact of changing the prior for the cut-points
but holding the prior for § fixed 8 ~ N(0,100%). The median of the posterior
distribution for 3 was used to determine performance metrics. The HMC method
was implemented in the R programming environment [26] and Stan [27], the latter
of which is a probabilistic programming language that specifies statistical models.
The R packages posterior [28] and rstanarm [29] were used to summarise posterior

distributions.

An iterative process was used to determine the number of simulations, ng;,, for each
scenario, to ensure that the required maximum tolerable upper bound of the Monte
Carlo standard errors (MCSEs) for each performance measure was less than 0.05
[30]. We calculated the jackknife-after-bootstrap MCSE for each parameter using
the method described in Koehler et al [31]. All scenarios achieved the upper bound
when ng;,, = 1000.

A burn-in of 5,000 iterations and a chain length of 10,000 samples per chain were
used across four chains, with no thinning, resulting in a total of 20,000 post-warmup
samples from the posterior distribution for each scenario. To evaluate the reliability
of the posterior distributions, convergence diagnostics were recorded, including the
effective sample size (ESS), the potential-scale reduction factor (f%), and the number
of divergent transitions, which signal difficulties in properly exploring the param-
eter space. Divergent transitions, which occur when the HMC sampler encounters
extreme curvature in the target distribution, were minimized or eliminated by ad-
justing the average target acceptance probability rate and increasing the maximum
tree depth. If divergent transitions were present, a sensitivity analysis that removed
the analysis method where such transitions occurred was performed to assess the

robustness of the conclusions.
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Performance measures

The performance measures of interest were the overall bias, relative bias, coverage
and mean-squared error of the proportional log-OR, relative to the value used in
the data generation [32]. Relative bias was calculated on the OR scale. For each
scenario, we also estimated the posterior probability that the intervention was su-
perior (whether this be at the interim or maximum sample size), the proportion
of trials that declared superiority, and among the trials that incorporated an early
stopping rule, the proportion of trials that stopped early.

Simulation study results

In this section, we summarise the results from the simulation study. There was a
similar pattern of results for the fixed and adaptive designs so we focus on the latter
and present the results for the fixed design in the supplementary material, unless
where patterns were different.

Specification of priors for 3

There was substantial bias in the estimated treatment effect when the outcome
distribution in the control arm was right-skewed for all prior distributions apart from
a prior specification on the R-squared, with the relative bias increasing for increasing
number of categories (see Figure 1 and Figure S2 in Supplementary Material 1).
However, the bias in the treatment effect was generally minimal irrespective of the
prior specification when the control probabilities were U-shaped or uniform for the
fixed design. The exception was when there was moderate effect size and sample
size was small for the Laplace (small SD), Cauchy and R-square prior specifications
when there was a positive bias, particularly for the adaptive designs. Coverage
showed a similar pattern being close to nominal coverage level (95%) when the
control probabilities were U-shaped or uniform, but with under-coverage when they
were skewed and there were 30 categories. This was the case for both fixed and the
adaptive design. Looking at the average posterior probability that the intervention
was superior (see Figures S9 and S10 in Supplementary Material 1), it appears that
with smaller effect size, the posterior probability decreased with higher number
of categories in the ordinal outcome for all priors. In particular, when there were
skewed probabilities in the control arm and a small sample size, it appears that the
posterior probability was slightly higher when a prior on the R-squared was used
compared with the alternative priors, which was the case for both the fixed and
adaptive designs. When the control arm probabilities were U-shaped, the proportion
of trials that declared superiority did not appear to differ substantially with the
choice of prior, although there was a slightly higher proportion of trials declaring
superiority with the Normal, Laplace and Cauchy prior compared to when a prior
specified using the R-squared was used. Similar results were observed for the fixed
design.

A higher proportion of trials with an adaptive design declared superiority when the
R-squared prior was used with skewed control arm probabilities when there was a
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small and moderate effect size, particularly with increasing number of categories in
the ordinal outcome (Figure 2¢). When there were skewed control arm probabilities,
the R-squared prior results in the highest proportion of trials that would have
stopped early, but when the control arm probabilities were U-shaped the R-squared
prior resulted in the fewest trials stopping early. In the latter context, specifying
Normal or Laplace priors with large standard deviations had the highest proportion
of trials that stopped early particularly with the larger effect sizes. It appears that
trials are less likely to stop early when the ordinal outcome is right-skewed in the
control arm and has a larger number of categories, regardless of the prior specified
for the treatment effect, with the exception of when the prior is specified on the
R-squared.

Of note, the posterior distributions for all target parameters of interest across all
scenarios appeared to converge to their stationary distribution, with R < 1.01 for
all priors and all scenarios. The bulk and tail effective sample sizes were all above
the recommendation of 100 per chain [33, 34], indicating good mixing and low
autocorrelation. The MCSE of all performance measures were less than 0.05 and
are reported in the supplementary material for each prior specification and each
scenario (Supplementary Material 2). There were no analyses where there were

divergent transitions.
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Figure 1a Relative bias in the odds ratio for the various
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Figure 1b Coverage of the 95% credible interval for the log-odds ratio for the various scenarios with an adaptive design when varying the prior for the treatment effect
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Figure 1c Proportion of trials declaring superiority in an adaptive design when varying the prior for the treatment effect
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Specification of implicit priors for

Keeping the prior for the treatment effect to be fixed at 8§ ~ N(0,100), as the
value of the concentration parameters of the Dirichlet distribution decreased, the
relative bias approached zero when the control arm probabilities were right-skewed,
regardless of the effect or sample size, for a fixed design (Supplementary Material
- Figure S16). In contrast, there was minimal relative bias when the control arm
probabilities were right-skewed when a Normal distribution was specified for the
cut-points, except when there was a small sample size and the ordinal outcome had
30 categories where there was an overestimation of the treatment effect (relative
bias 9% and 11% for skewed and U-shaped probabilities respectively). When the
control arm probabilities were U-shaped or uniform, there was minimal bias in
the treatment effect for all of the prior specifications except when there were 30
categories and the sample size was small.

When the design was adaptive, there was a tendency to overestimate the treatment
effect with all priors for all scenarios (Figure 3a). This relative bias increased with
the number of categories and effect size. The results were similar irrespective of
the choice of concentration parameter with larger sample sizes, however, for smaller
sample sizes, the priors with a concentration parameter closer to zero resulted in
smaller bias for the treatment effect. When the control arm probabilities were right

skewed, specifying a Dirichlet using o = 0.5 or a = % resulted in lower bias that

J
the other priors regardless of the number of categories in the outcome. Coverage
was close to the nominal level of 95% for the majority of scenarios (Figure 3b), with
the exception of Dirichlet priors where the concentration parameters were closest

to zero which resulted in under-coverage.

When the control arm probabilities were skewed, adaptive designs were less likely to
declare superiority and therefore less likely to stop early (Figure 3c) when a Dirichlet
prior with & = 1 or a = 0.5 was used compared to other priors. Importantly, trials
were more likely to stop early even when there was no treatment effect when using
the Dirichlet prior with a small concentration parameter, with a probability of up
to a 18% chance of stopping early in some scenarios.

Page 14 of 26



Figure 2a Relative bias in the odds ratio for various scenarios with an adaptive design when varying the implicit prior on the cut-points
OR = odds ratio, SD = standard deviation
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Figure 2b Coverage in the log-odds ratio for various scenarios with an adaptive design when varying the implicit prior on the cut-points
OR = odds ratio, SD = standard deviation
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Figure 2c Proportion of trials declaring superiority in an adaptive design when varying the implicit prior on the cut-points
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When altering the prior on the cut-points, divergent transitions sometimes occurred,
despite increasing the target acceptance probability rate and maximum tree-depth
to reduce the number that occurred. Divergent transitions were particularly com-
mon when the Dirichlet prior was used with small concentration parameters when
the sample size was small and the outcome had with 30 categories. We present the
results with and without divergent transitions given some results had high R and
very small effective sample sizes (see Supplementary Material 3). When the simu-
lated datasets resulting in divergent transitions were removed, all estimates of the
R were < 1.01, effective sample sizes were sufficiently large, and the MCSE for the
performance measures were less than 0.05.

The ASCOT case study

ASCOT was an adaptive platform trial that evaluated the efficacy of multiple in-
terventions for hospitalised, non-critically ill COVID-19 patients. It evaluated in-
terventions across three intervention domains: anticoagulation, antiviral, and ther-
apeutic antibody domains, each comparing a different set of interventions to stan-
dard of care within that domain. The primary outcome was death or the need for
organ support by day 28 (a binary outcome), but the trial had four secondary or-
dinal endpoints (described below). We focus on the anticoagulation domain, which
trialed low-dose thromboprophylaxis with low-molecular-weight heparin (LMWH),
intermediate-dose LMWH, and a low-dose LMWH with once-daily aspirin. The as-
pirin arm was discontinued during the trial due to external evidence, and a new arm
with therapeutic-dose anticoagulation was introduced. The trial ended early because
of funding limitations, slowing participant recruitment, and a recommendation from
the data safety and monitoring committee to stop therapeutic anticoagulation due
to lack of effectiveness.

ASCOT had four ordinal secondary endpoints:

1 WHO 8-point ordinal outcome scale at day 28 post randomisation: (1) not hos-
pitalised and no limitations on activities, (2) not hospitalised, limitations on
activities, (3) hospitalised, not requiring supplemental oxygen and no longer
requiring ongoing medical care, (4) hospitalised, not requiring supplemental
oxygen but requiring ongoing medical care, (5) hospitalised, requiring sup-
plemental oxygen, (6) hospitalised, on non-invasive ventilation or high flow
oxygen devices, (7) hospitalised, on invasive mechanical ventilation or ECMO,
and (8) death.

2 Modified Medical Research Council (mMRC) breathlessness scale (only asked
among those diagnosed with COVID-19), a 5-point ordinal scale: (1) ‘I only
get breathless with strenuous exercise’, (2) ‘I get short of breath when hurrying
on level ground or walking up a slight hill’; (3) ‘On level ground, I walk slower
than people of the same age because of breathlessness, or I have to stop for
breath when walking at my own pace on the level’, (4) ‘I stop for breath after
walking about 100 yards or after a few minutes on level ground’, and (5) ‘I
am too breathless to leave the house or I am breathless when dressing or

undressing’.
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3 Days alive and free of hospital by 28 days post randomisation: a 29-point
ordinal outcome calculated as 28 minus the number of days spent in hospital,
where patients dying within 28 days were assigned zero free days.

4 Days alive and free of ventilation by 28 days post randomisation: a 29-point
ordinal outcome calculated as 28 minus the number of days free of invasive or
non-invasive ventilation, where patients dying within 28 days were assigned
zero free days.

The same prior distributions used in the simulation study were applied in the anal-
ysis of the anticoagulation domain of ASCOT using complete cases only [18]. For
simplicity we focused on comparing only the low vs intermediate dose with LMWH
and present the results for each of the four secondary ordinal endpoints. Supple-
mentary Material 4 provides an overview of the distribution across categories by
intervention group for each ordinal endpoint, which were largely skewed.

When the six priors for the treatment effect were applied to the analysis of the
WHO scale, all methods estimated the proportional log-OR of the ordinal scale
to be smaller than zero indicating the low-dose provided better odds of a more
favourable outcome (Figure 4). All approaches resulted in a similar point estimate
and large uncertainty irrespective of the prior (Figure 3). Similar estimated treat-
ment effects were observed when the implicit prior on the cut-points is varied for
all of these outcomes. Supplementary Material 4 indicates similar results across all
other outcomes.
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Figure 3 Estimated treatment effect of proportional log-ORs for the WHO eight-point scale in the
Australasian COVID-19 Trial (ASCOT) obtained under the six prior specifications for treatment
effect

OR = odds ratio, SD = standard deviation
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Discussion

This study examined the impact of different non-informative prior distributions on
parameters of a Bayesian PO model have on estimation and operating characteristics
in the context of a fixed and an adaptive trial with an early stopping rule. When
varying the prior for the treatment effect, results indicate that bias was substantial
when the control arm probabilities are right-skewed for all priors apart from the
R-squared prior specification, especially with increasing categories in the ordinal
outcome and smaller sample size. If it is expected that participants will fall at
both ends of the ordinal scale, then specifying a Normal, Cauchy or Laplace prior
distribution for the treatment effect would be appropriate. There was not much
variation in the results when a Laplace or Normal prior distribution was used for
the treatment effect or with different values for the standard deviation for these
priors. This implies that in fact, specifying a reasonably small or large variance
term will still result in a rather ‘non-informative’ prior distribution that does not
impact the treatment effect in the scenarios considered in this study. This study also
found that when altering the implicit prior on the model cut-points while keeping
the prior for the treatment effect fixed, decreasing the concentration parameters
for a Dirichlet prior can reduce bias in treatment effect estimation for right-skewed
control arm probabilities, with minimal bias when using a Normal distribution for
cut-points (except for small sample sizes and 30 categories), and results in a higher
proportion of trials to stop early.

The results from our study also show that it is more likely that divergent transitions
will occur when a Dirichlet prior with concentration parameters close to zero is used
for the control group probabilities which, although can attempt to be mitigated by
increasing the target average acceptance probability rate, may still exist in some
circumstances. Divergent transitions implies that there were issues in the sampler
exploring the posterior distribution of the target parameter, which can lead to
biased inference. Divergent transitions were more likely to occur when the sample
size is small and with a larger number of categories. The implications of this is that
careful consideration should be made for selecting an appropriate Dirichlet prior,
particularly when it is known that the interim analysis will occur at a small sample
size or the ordinal outcome has a large number of categories.

Symmetric priors like the Normal, Laplace or Cauchy distributions assume that
the treatment effect could be in either direction. This may be unjustified if a large
proportion of participants are expected to be at one end of the scale (and therefore
there is data sparsity in the remaining categories) which may explain the bias with
these approaches when the controlled probabilities are skewed. In contrast, the R-
squared prior allows for the fact that the variation in the outcome might not be due
to the treatment effect alone, but could also be explained by other factors such as
the distribution of outcomes in the control arm. This could be more consistent with
the skewed distribution of outcomes and hence may explain the minimal bias with
this approach. When varying the prior for the control arm probabilities, the uniform
Dirichlet prior (which reflects that there is equal probability in each category of the
control arm) may lead to poor estimation of the control arm’s distribution in the
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PO model, particularly when the control probabilities are skewed, resulting in an
underestimation of the treatment effect. Trials that incorporated early stopping
rules exhibited larger bias in the treatment effect for some of the priors than the
fixed design, particularly for U-shaped control probabilities. This aligns with the
expectations that trials that stop early are more likely due to random highs [35].
Adaptive designs that used the R-squared prior specification had the highest early
stopping rates when the control data were skewed, particularly when the ordinal

outcome had many categories.

We also found that decreasing the concentration parameters for a Dirichlet prior
can reduce bias in treatment effect estimation for right-skewed control arm proba-
bilities. Reducing the concentration parameters allow the Dirichlet prior to become
more diffuse, meaning it gives less weight to a prior belief that the categories should
be equally distributed and uniform. This therefore gives the model more freedom
to adjust based on the actual data. When the control arm probabilities were U-
shaped, the choice of prior for the control group probabilities had little impact on
the estimation of the treatment effect, likely because the prior distributions are
symmetric about the middle category and there is reasonable probability of falling
in each category. We found that using a Dirichlet prior for the control group prob-
abilities with a concentration parameter closer to zero resulted in a trial that was
more likely to stop early and/or declare superiority, even when there was no asso-
ciation between intervention and outcome. This is likely because the lower value of
the concentration parameter leads to more uncertainty in the prior belief about the
outcome. This flexibility makes the model more sensitive to random fluctuations in
the data, increasing the chances of detecting a treatment effect even in the absence
of a true effect, leading to premature stopping of the trial. Another possible ex-
planation is that the priors for the model parameters for the treatment effect and
model ‘intercepts’ have been specified independently from each other a priori (and
are therefore approximately independent in the posterior). However, in our study,
we used standard treatment coding (assigning 0 and 1 for the treatment indicator)
which does not ensure that these parameters are uncorrelated in the model. An
alternative would be to center the treatment contrast specification, that is, to code
the treatment variable as :l:% [36], to ensure the treatment coefficient is approxi-
mately uncorrelated with the model ‘intercepts’ which may alleviate the observed
bias. Although not the focus of this study, future research could explore centering

of treatment covariates in more detail.

The results of this study has implications for practice. It is common for trials
(whether fixed or adaptive) to specify a Normal prior distribution for the treat-
ment effect and an implicit Dirichlet prior on the model cut-points in a Bayesian
PO model [1] using & = 1. However, the results from this study suggest that the
most appropriate priors may depend on the distribution of participants in the con-
trol arm. Use of pilot data or similar studies would therefore be useful prior to
data collection in determining the distribution of patients across the categories in
order to guide the selection of priors. For example, if it is expected that control arm

patients are more likely to fall in the first few categories of the ordinal outcome,
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then an R-squared prior specification on the treatment effect might be more appro-
priate, particularly if the ordinal outcome has a large number of categories. If little
is known about the distribution of the outcome in advance, then pre-specified sen-
sitivity analyses could be conducted using various non-informative priors to assess
the robustness of the results to the priors used at the final analysis. For example, if
a diffuse Normal prior is used for the treatment effect, which is common in practice,
then decreasing the value of the concentration parameters of the Dirichlet prior
closer to zero or using a Normal prior for the cut-points may reduce bias and in-
crease the likelihood of stopping the trial early when the control arm probabilities
are skewed. We acknowledge that an exploration of the different priors would not
be as useful for an interim analysis if one prior resulted in a threshold being reached
to stop but another prior did not.

Our study has several strengths. The simulation study explores a number of realistic
scenarios (108 in total). We have considered both a fixed and an adaptive design,
and considered a range of prior distributions that could be used. We have also
applied the same approaches to a case study with four different ordinal outcomes.
However, this study does have its limitations. First, there are many other possible
control arm distributions and adaptive designs that could be explored where the
different non-informative priors could lead to different results. Second, we did not
explore the impact that the specification of the priors may have in a multi-arm trial
or in an analysis that adjusts for covariates in the model, such as randomisation
strata, although we do not expect the latter to affect the results. Third, we only
considered a limited set of commonly used priors and acknowledge that there are
other alternatives that may warrant investigation. Finally, we did not consider the
impact that departure from PO has on the results as this may not be a realistic
assumption to make in practice. This should be investigated in future studies.

In summary, there are numerous possible non-informative prior distributions that
can be specified for the Bayesian PO model, and careful specification of these should
be considered when conducting such an analysis. Importantly, the most appropri-
ate prior appears to depend on the distribution of the control arm probabilities.
We recommend the use of the R-squared prior specification when the control arm
is skewed, and a Dirichlet prior with concentration parameters close to zero in con-
junction with a Normal prior for the treatment effect if the analysis occurs at a
reasonable sample size (e.g. n = 500), otherwise concentration parameters set to
one would be appropriate to avoid divergent transitions. Choosing an appropriate
non-informative prior will result in better inference and therefore trial conclusions
and adaptive decision-making.
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