# ADAPTIVE HEALTH INTELLIGENCE

**EVIDENCE IN ACTION** 

## Designing Efficient Clinical Trials

Michael Dymock 8<sup>th</sup> August 2023









#### About me...

- 2018:
  - BSc (Hons) Mathematics & Statistics
  - Berwin Turlach and Kevin Murray
- 2019-2020:
  - UWA Centre for Applied Statistics
- 2020 onwards:
  - Biostatistician at Telethon Kids, et. al.
- 2023 onwards
  - PhD with Kevin Murray, Julie Marsh and Tom Snelling
  - Council member of SSA WA Branch
  - Member of IBS-AR





#### Overview

- Why design clinical trials?
  - Type I error, power, sample size
- Fixed designs
  - Simulations
- (Bayesian) adaptive designs
  - -Simulations
- Some examples
- Questions for the future





## Why design clinical trials?

- Better science
- Efficient use of resources
- Ethical reasons
- To keep biostatisticians employed?

Fix it in the statistical analysis

Fix it during the data collection

Fix it when writing the protocol

Do not do this study





#### Questions to consider

What is the research question?

What are we wanting to measure/observe?

What is the (primary) endpoint/outcome?

What is the hypothesis?

What is our desired type I error and power?

What sample size do we require?



## A simple example (infectious diseases and vaccines)

- What is the research question?
  - Which vaccine (A or B) will offer the greatest protection against the disease?
- What are we wanting to measure/observe?
  - Immune response to vaccination
- What is the (primary) endpoint/outcome?
  - Log10 antibody concentration at 28 days after vaccination
- What is the hypothesis?
  - Vaccine B produces a greater antibody response than Vaccine A
- What is our desired type I error and power?
  - Type I error = 0.07; Power = 0.85
- What sample size do we require?

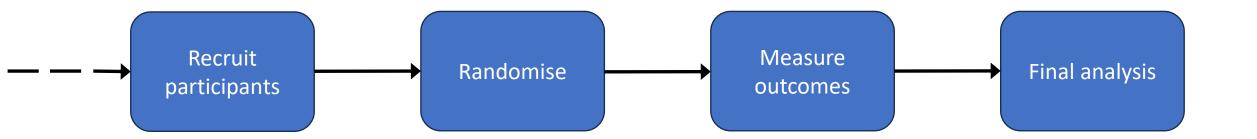


## Fixed trial designs

- The trial design is **fixed** prior to trial commencement
  - Number of trial arms, randomisation probabilities, sample size, etc. does not change as the trial progresses
- "Easy" to design the trial
  - Choose the design to obtain desired operating characteristics
- "Easy" to implement the trial
  - Understandable for participants, analysts, scientists
- Opportunity costs?
  - Information gathered during the trial cannot be used



## Fixed trial designs





## Sample size calculations

- "With a sample size of **N**, the study is powered at 85% to detect a clinically important difference of **X** units whilst maintaining the type I error below 7%."
- How do we determine N and X?
- Clinically important difference
  - -Stephen Senn: That which is used to justify the sample size but will be claimed to have been used to find it.



## Back to the vaccine example

- What sample size do we need if the clinically important difference is 0.5 units on the log10 scale?
- Suppose we were doing a simple z-test to compare mean log10 antibody concentration assuming known equal variance of 4 units

$$-H_0: \mu_B - \mu_A = 0$$

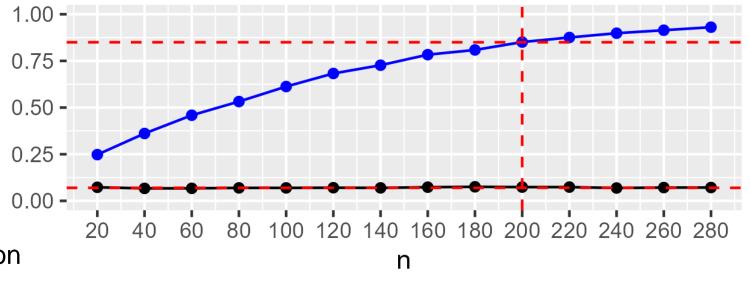
$$-H_1: \mu_B - \mu_A > 0$$

Use a formula!

• 
$$N = 2\left(\frac{(z_{\alpha}+z_{\beta})\sigma}{\delta}\right)^2 = 2\left(\frac{(1.48+1.04)\times 2}{0.5}\right)^2 \approx 202$$

## Is there another way?

- Let's pretend we did not know the formula (or have internet access to Google it)
- We can use simulation instead!
  - Consider  $n \in \{20,40,...,280\}$
  - "Null" & "effect" scenarios
  - Simulate 10,000 trials for each n
  - Compute p-value for each simulation
  - Power = proportion of p-values < 0.07</p>
  - Type I error maintained at 0.07
  - Approximately 0.85 power at n = 200





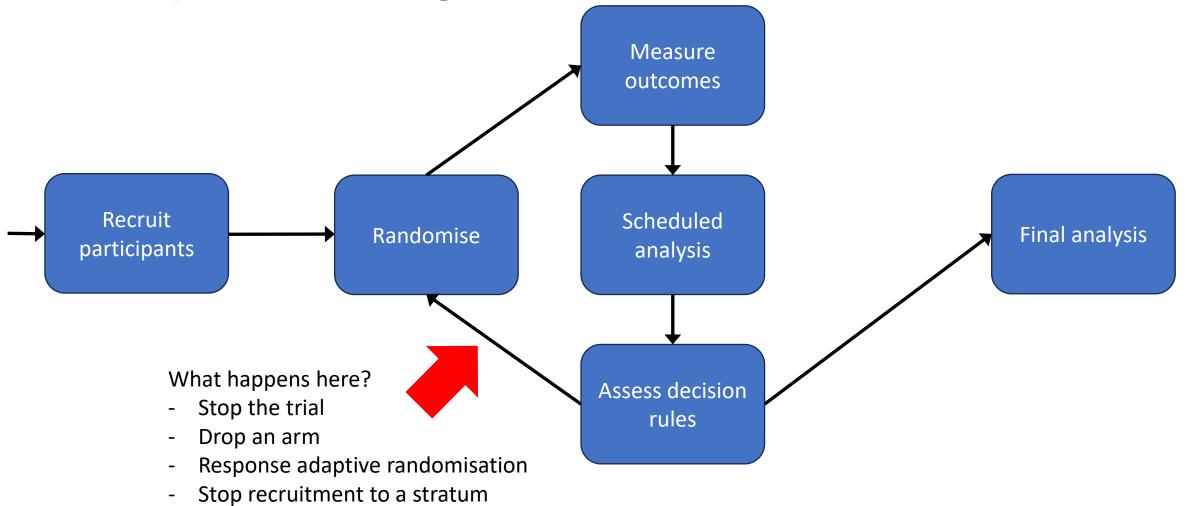


## Adaptive trial designs

- The trial design adapts in response to the accrued data
  - Number of trial arms, randomisation probabilities, sample size, etc. may change as the trial progresses
- "Hard" to design the trial
  - Requires simulations, many levers to pull
- "Hard" to implement the trial
  - More complicated for participants, analysts, scientists
- Opportunity gains?
  - Information gathered during the trial can be used to increase design efficiency



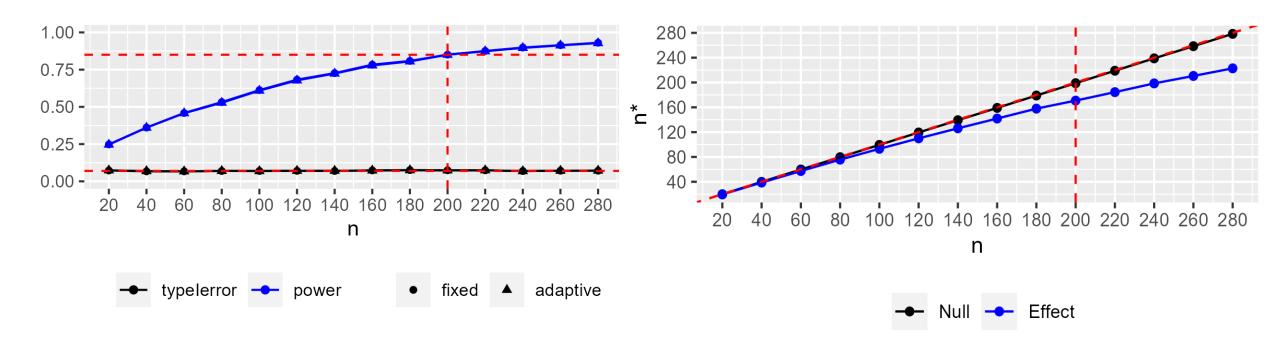
## Adaptive trial designs





## Simple example

- What if we just looked at the data earlier?
  - At the halfway point check if the p-value is significant
  - Stop if it is, otherwise continue recruitment
  - Will need to "spend" alpha wisely



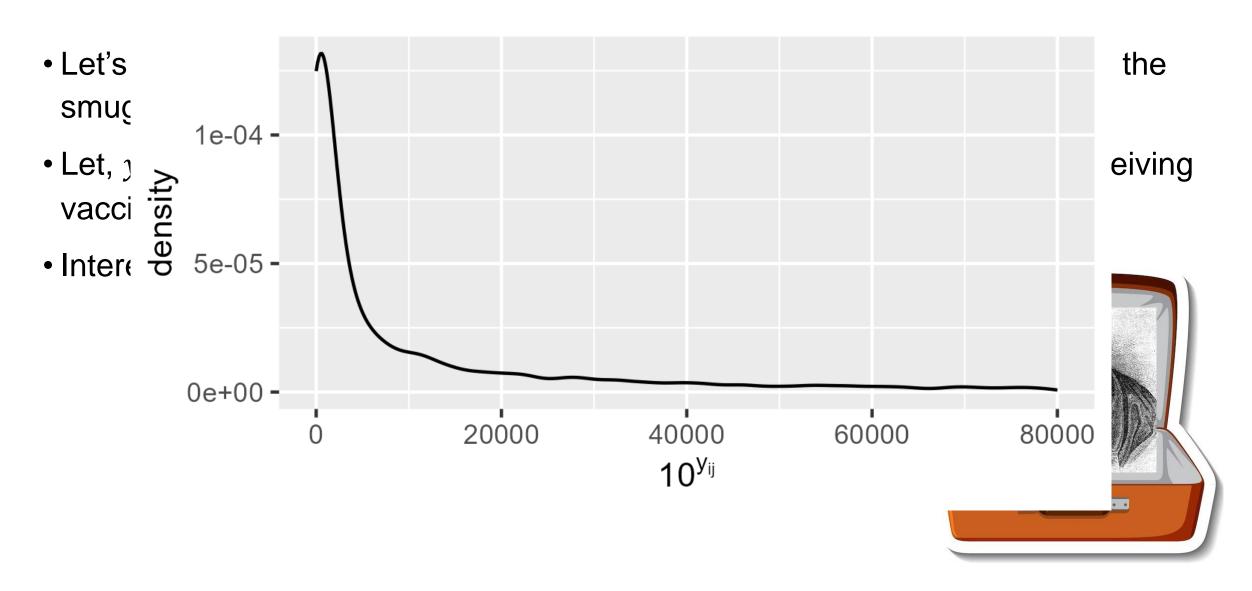
## Is this cherry picking?

- For an adaptive design we prespecify the decision rules
  - Although decisions are made conditional on the data, the rules for decision-making were agreed beforehand
- Impact of decision rules is explored prior to trial implementation (simulations)
- We have "freedom" with decision rules but typically use "superiority" and "futility" rules





## Modelling the vaccine example



#### What does the trial look like?

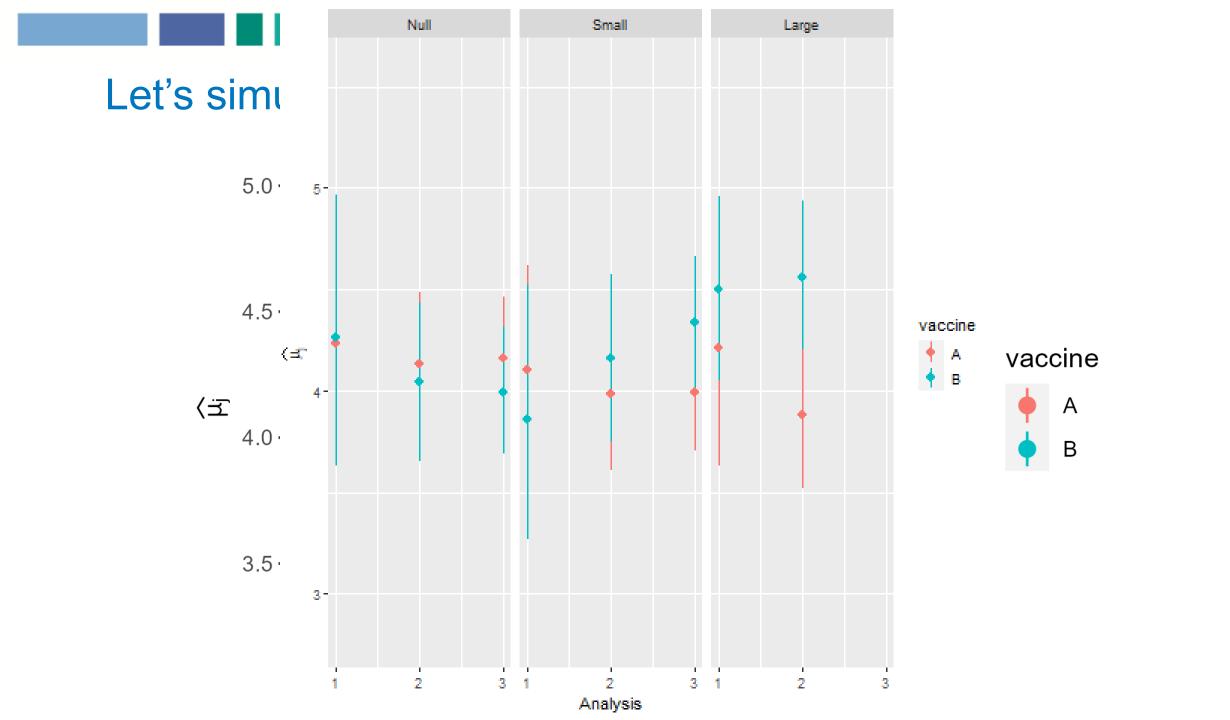
- Suppose we plan to uniformly recruit up to 300 participants over 1 year
  - Randomise 1:1 to vaccine A or B
  - Schedule an analysis after every 100 participants
- Define treatment comparison (contrast) as  $\theta = \mu_B \mu_A$
- Three scenarios: Null ( $\theta = 0$ ), Small Effect ( $\theta = 0.2$ ) and Large Effect ( $\theta = 0.5$ )
- Define decision rules for each analysis based on posterior distribution of  $\theta$ :
  - Stop and declare vaccine B superior if:  $P(\theta > 0) > 0.95$  (or  $P(\theta > 0) > 0.975$ )
  - Stop and declare trial futile if:  $P(\theta > 0) < 0.05$

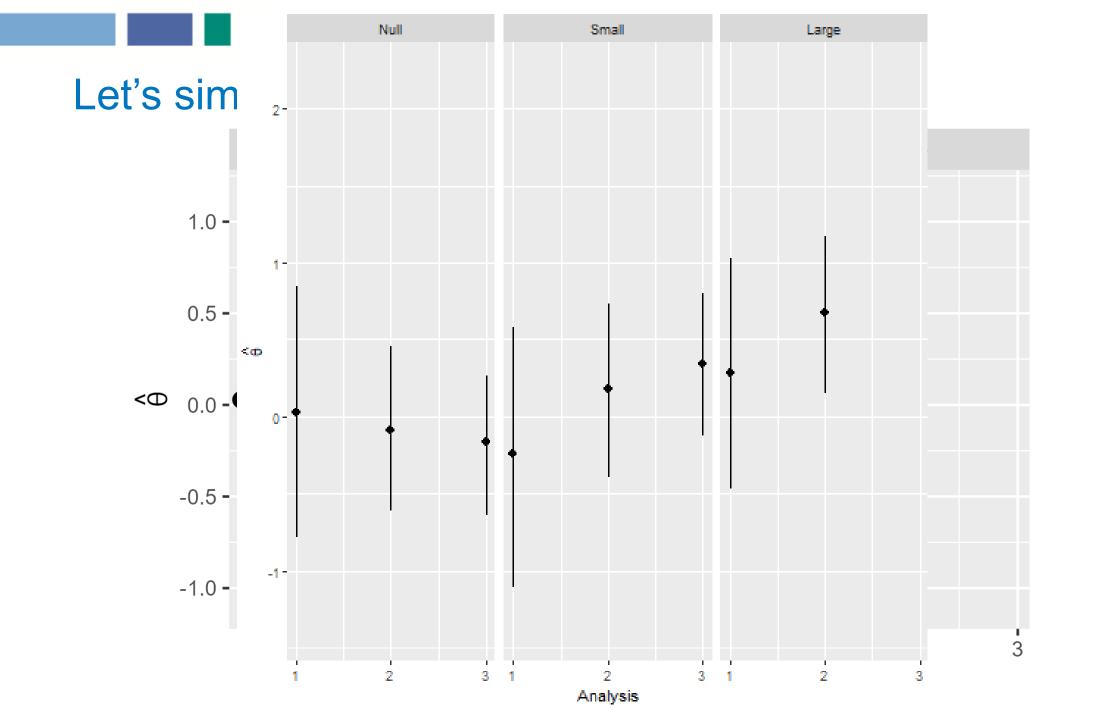
## Decision rules galore

- In theory, these decision rules can be anything that we can compute
- We could use a different threshold at each analysis (similar to alpha spending)
  - $-P(\theta > 0) > 0.995$  at early analyses
  - $-P(\theta > 0) > 0.94$  at the final analysis
- We could directly compare to a "clinically important difference"
  - $-P(\theta > 0.5) > 0.9$
- We could define a decision rule based on another quantity entirely

$$-P\left(\frac{\mu_B - \mu_A}{\mu_A} > 0\right) > 0.95$$



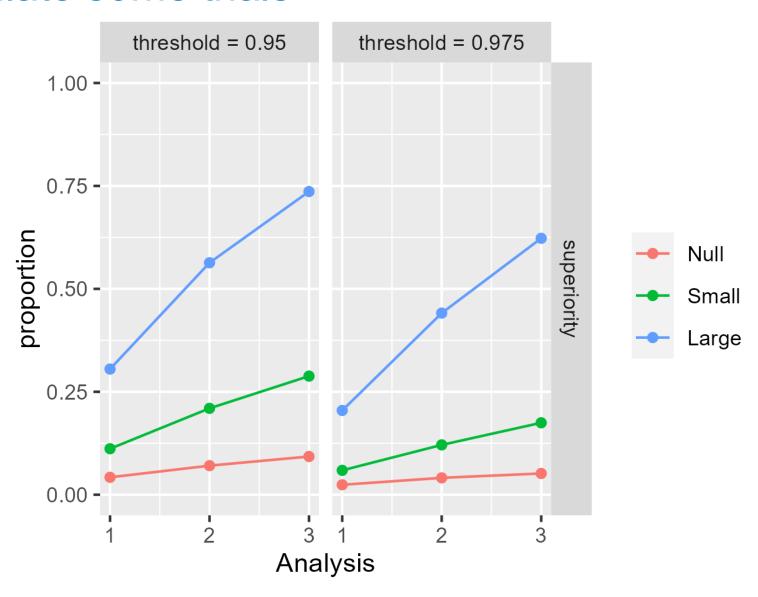




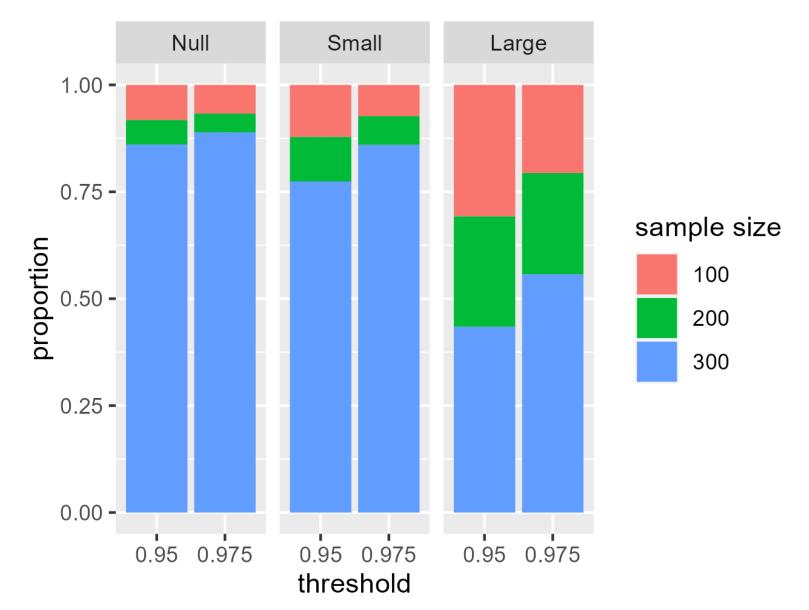
## Let's simulate some trials

| Scenario     | Threshold | Proportion of trials declaring superiority | Mean Sample Size |
|--------------|-----------|--------------------------------------------|------------------|
| Null         | 0.95      | 0.093                                      | 278              |
|              | 0.975     | 0.052                                      | 282              |
| Small Effect | 0.95      | 0.288                                      | 265              |
|              | 0.975     | 0.175                                      | 279              |
| Large Effect | 0.95      | 0.736                                      | 213              |
|              | 0.975     | 0.623                                      | 235              |

## Let's simulate some trials



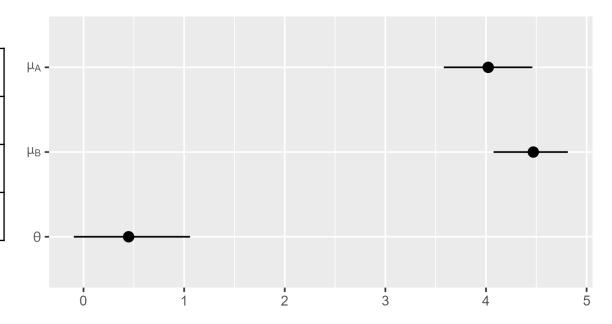
### Let's simulate some trials



## How should we report our estimates?

• Look at one analysis with 200 participants ( $\mu_A = 4$ ,  $\mu_B = 4.5$ ,  $\sigma_A = \sigma_B = 2$ )

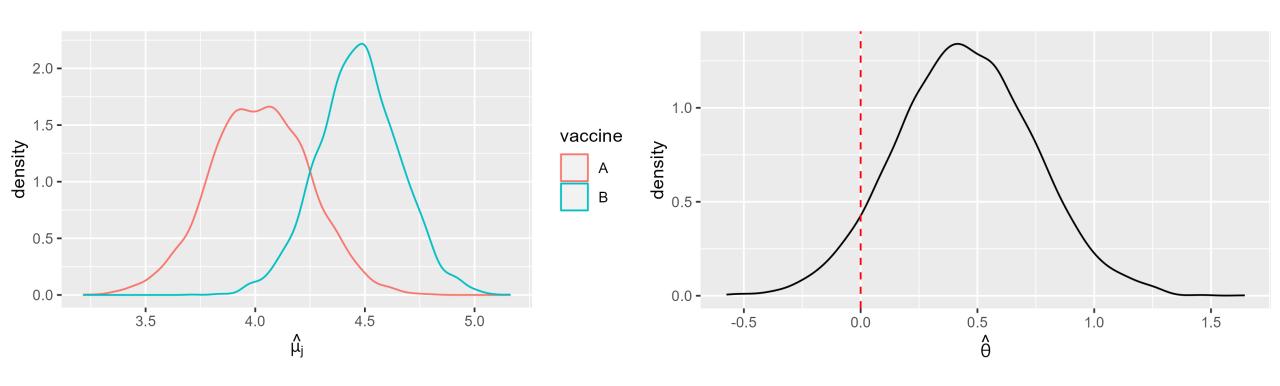
| Parameter | Mean | 95% HDI Interval |
|-----------|------|------------------|
| $\mu_A$   | 4.02 | (3.58, 4.46)     |
| $\mu_B$   | 4.47 | (4.08, 4.81)     |
| θ         | 0.45 | (-0.10, 1.06)    |



- Decision:  $P(\theta > 0) = 0.94$ 
  - Do not stop for superiority or futility

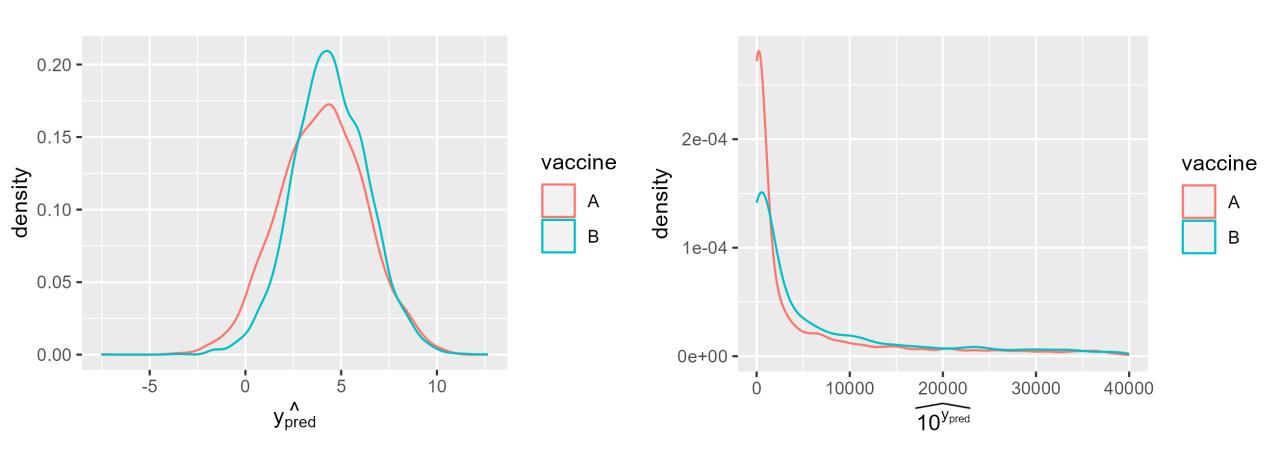
## How should we report our estimates?

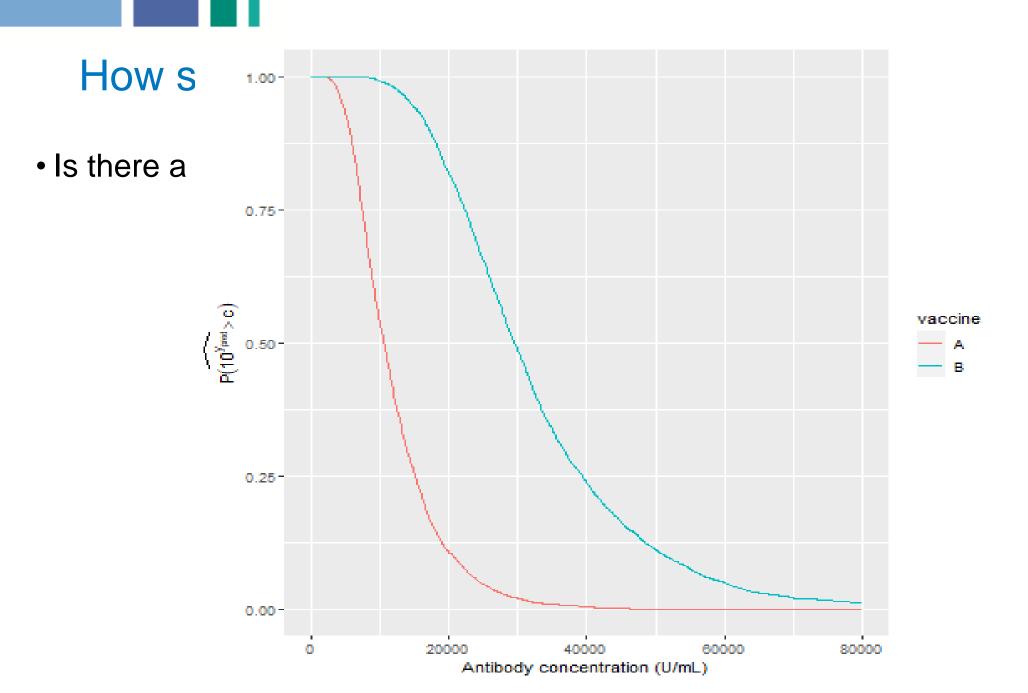
How about visualising the full densities?



## How should we report our estimates?

How about visualising at the individual level?





## Some real examples – Healthy Ears

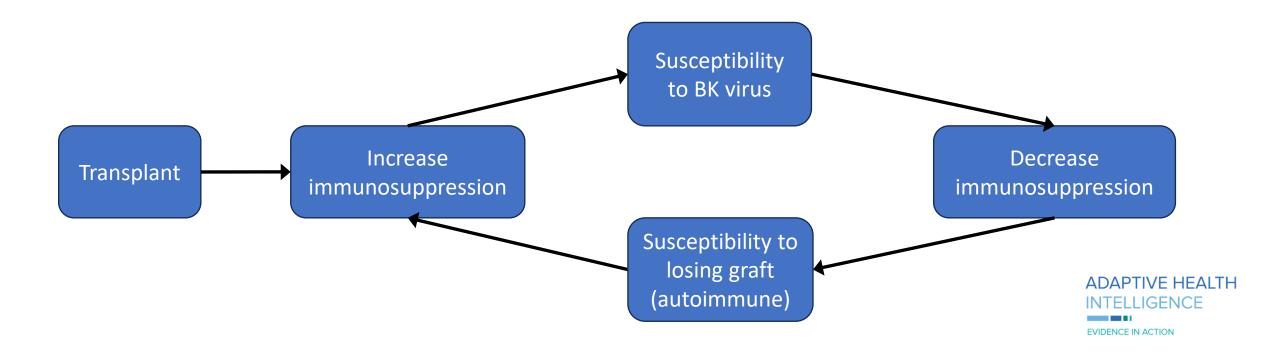
- Otitis media (middle ear infections) in children aged 4-7 years
- Interventions: Hygiene advice vs hygiene advice + blow breath cough technique
- Outcome: Resolution of infection at 4 weeks (binary)
- Decision rules: Stop early for superiority or futility





## Some real examples – BEAT-BK

- BK viraemia in kidney and kidney + pancreas transplant recipients
- Interventions: Control vs IVIG (blood product)
- Outcome: Five category rank on condition at 12 weeks (ordinal)
- Decision rules: Stop early for superiority or futility



## Some real examples – PICOBOO

• COVID-19 vaccinations in immunocompetent participants (3<sup>rd</sup> dose – 5<sup>th</sup> dose)

• Interventions: Pfizer, Moderna, Novavax, ...

Outcome: log10 antibody concentration at 28 days

Modelling: Hierarchical model (partial pooling) over strata, age etc.

• Decision rules: Stop recruitment to a stratum if adequate precision





## Some real examples – BOOST-IC

• COVID-19 vaccinations in immunocompromised participants (4<sup>th</sup> dose – 8<sup>th</sup> dose)

• Interventions: Pfizer, Moderna, Novavax, ... but one or two doses

Outcome: log10 antibody concentration at 28 days

Decision rules: Stop recruitment to a stratum if adequate precision





## Some real examples – SNAP

Platform trial for treatments of staphylococcus aureas

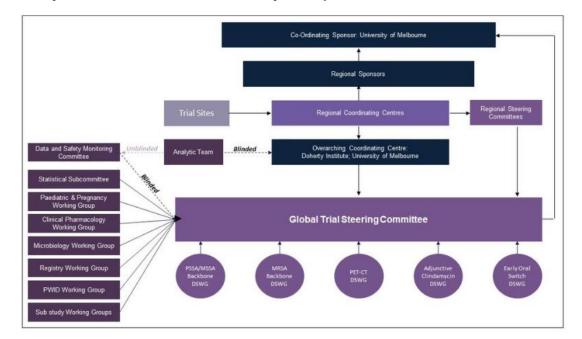
• Domains: Backbone, adjunctive, early oral switch

Silos: Resistance of strain to classes of antibiotics

• Interventions: Different antibiotics, timing of switch

Outcome: Mortality at 90 days (binary)

Decision rules: Superiority and non-inferiority dependent on domain x silo





## Some final thoughts

- Adaptive designs allow for the accrued data to inform the design
- There are drawbacks
  - Risk of biased estimates (e.g., stopping at a random high)
  - Harder to design and implement (more resources)
  - Not suitable for all clinical trials (e.g., fast recruitment with slow endpoint)
- But there are advantages
  - Resource efficiency
  - Answers to scientific questions faster (translation to policy)

## Some final (open) questions for future research

Publicly funded research is intended to improve the *health* of the (future) population.

- What (ethical) responsibility do we have as publicly funded researchers to design our studies with improving *health* as the objective?
- How can we design clinical studies to inform the decision-making of clinicians and consumers?
- How can we report our results to best inform decision-making?
- How should we handle multiple (possibly competing) endpoints (e.g., efficacy vs safety)?
- How can we implement our research to drive policy? (Instead of back filling the evidence)