# ADAPTIVE HEALTH

**EVIDENCE IN ACTION** 

# Advice to Medical Students: A Statistical Sermon

Michael Dymock 29<sup>th</sup> May 2024



About me...

• 2014-2020:

BSc (Hons) Mathematics & Statistics UWA Centre for Applied Statistics

• 2020 onwards:

Biostatistician at Telethon Kids, et. al.

• 2023 onwards

PhD @ UWA

Council member of SSA WA Branch





#### A Statistical Sermon

Statistical literacy Good research Better health outcomes







#### Overview

- Probability, statistics and models
- Embracing uncertainty
- Hypothesis testing
- Sample size
- The ten commandments
- Where to find more help





#### **Probability vs Statistics**

If only I knew the **parameters**, then I could predict the **observations**!



If only I knew the **observations**, then I could infer the **parameters**!



#### **Probability vs Statistics**





- We can use **probability distributions** to understand the behaviour of the world around us
  - E.g., a clinician can make an informed decision on prescribing a treatment if they understand its behaviour (e.g., mean and variance)
- We can use **statistical methods** to infer the probability distributions of interest
  - E.g., by collecting and analysing data, we can estimate **parameters** (e.g., **mean** and **variance**)



#### The normal (Gaussian) distribution

- A **probability distribution** (something that allocates probabilities over a set of possible outcomes)
- Has both a mean parameter and a variance parameter and is symmetric









ADAPTIVE HEALTH



#### What do we mean by uncertainty?

- In **frequentist** statistics, parameters have **unknown** but **fixed** values
- Because they are **unknown**, we cannot be sure how close our guess/estimate is to the true **fixed** value
- But we can estimate our **uncertainty** in the estimation itself
- We usually do this using **confidence intervals**
- E.g., our **point estimate** may be 4 but our 95% confidence interval may be (2,6), this describes our uncertainty in the point estimate

\*Bayesians have a different take on this – speak to me later if you want to join the dark side

#### What is a hypothesis test?

- We assess the claim of a hypothesis against the evidence
- Specifically, we assess the evidence that a **model parameter** takes on a certain value or lies within a certain range
- E.g., one may **hypothesise** that  $\mu > 0$  (i.e., that the mean response is positive)
- We can test this claim using the two **hypotheses**:
  - Null hypothesis:  $H_0: \mu = 0$
  - Alternative hypothesis:  $H_1: \mu > 0$

The philosophical argument...

- Proof by contradiction
  - Suggest Theory X
  - Find a contradiction (or counter example) to Theory X
  - Therefore, Theory X is false
- Scientific arguments or theories (rarely) can ever be proven
- Instead, we gather evidence to **support** or **counter** a theory
- With a hypothesis test, we aim to assess evidence that **counters** the claim of the null hypothesis, thus **supporting** the alternative hypothesis
- **BUT** the failure to find counter evidence **does not** prove the null hypothesis
- We do this with p-values!



#### P-values: holy grail or poisoned apple?

- A p-value is the *a priori* probability of observing the data (or more extreme) under the **assumption** that the null hypothesis is **true**
- A small p-value is therefore evidence that the data were unlikely to be observed if the null hypothesis was true (i.e.,  $\mu = 0$ )
- This is the **counter evidence** against the null hypothesis, and so we **reject** it
- We need to *a priori* set a **threshold** or **significance level**
- How small does the p-value need to be to convince me that the null hypothesis is false
- Historically, and preferably in the eyes of grant review panels, this is set at the magical value of 5% (p-values under 5% are "good" otherwise we just try again or file it away and pretend it never happened)



#### Is this an issue?





### Why do we care about sample size?

Decreasing the sample size



**Increasing** the sample size

- Save resources!
- Ethics??

- Increase precision!
- Ethics??

#### From a (purely) statistical point of view...

- Large sample sizes are always preferable with caution
- At **study design**, we compute the required sample size to achieve the desirable **type one error** and **power** 
  - Although, this is usually done backwards!
- **Power** is chance we **correctly** reject the null hypothesis
- **Before** seeing data, the sample size can help us understand the possible behaviour of the trial and guide our interpretation of the results
- After seeing data, the sample size no longer matters!

#### The ten (statistical) commandments for medical students

- 1) Pursue the truth with integrity and enthusiasm;
- 2) Respect tradition, the scientists and their methods, for they paved the path you walk;
  - 3) Challenge dogma, sometimes they were wrong, and we can do better;
  - 4) Be humble, you are probably also wrong, but the journey is worthwhile;

#### 5) Embrace uncertainty: an uncertain answer to the right question is better than a certain answer to the wrong question;

- 6) Think carefully about what you are trying to estimate and why;
- 7) Beware of biases: there will always be a snake in the garden;
- 8) Sacrifice the project of your dreams for the supervisors you love;
- 9) Befriend the internet: a problem you face now was likely solved long ago;

10) Employ a statistician for they too have families to feed (and they may also be useful);



#### Where to find more help

Perth Children's Hospital (seminars):

**CAHS Research Education Program Research Skills Seminars** 

Telethon Kids Institute (consultancy service):

biometrics@telethonkids.org.au

UWA Centre for Applied Statistics (short courses and consultancy service):

consulting-cas@uwa.edu.au

Joint clinical and statistical supervision (unlimited access to knowledge)

#### Checklist for talking to a statistician

- Clear hypothesis
- Proposed study design
- Primary endpoint & estimate of variability
- Clinically relevant effect size
- Estimate of feasible sample size
- Important confounders and source of bias
- Similar publications or systematic reviews



How can I learn more about statistics?

- In the absence of large, randomised, well-controlled clinical trials to address every research question we all need to increase our statistical literacy
- Explore online and in-person courses
- Ask questions
- Be brave!



## Thank you

# **WHEN THE P-VALUE IS JUST ABOVE .05**

