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Abstract 19 

Background 20 

The demand for adaptive trial designs is growing because of their flexibility and the potential 21 

for efficiency gains over traditional fixed designs. Adaptive trials allow planned 22 

modifications to the design based on accumulating data. Simulation is imperative in 23 

designing adaptive trials because analytical power formulae cannot account for data driven 24 
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adaptations. Despite their popularity, the uptake of adaptive trials has been slowed by the lack 25 

of expertise and availability of training resources.  26 

Methods 27 

In this tutorial, we demonstrate how to simulate data from a simple adaptive trial with a 28 

single interim analysis, summarise the simulations, and use these results to balance the type I 29 

error and power to inform the study design and to determine the expected sample size. The 30 

simulation code, based on a real trial in hyponatraemia in children, is provided in both R and 31 

Stata programming languages. The code is written in modules to improve comprehensibility 32 

and enable simple changes to generate a range of adaptive designs.   33 

Discussion 34 

When using simulation to design an adaptive trial, the simulations must be tailored to the 35 

unique design requirements of the trial at hand. We hope that this tutorial will provide a 36 

starting point that will make the simulation process more accessible to both statisticians and 37 

clinicians. 38 

Keywords: Adaptive trials, Trial design, Simulation, Sample size 39 

1. Introduction 40 

Adaptive trial designs are becoming increasingly important in medical research as they allow 41 

for prospectively planned modifications to one or more aspects of an ongoing clinical trial 42 

based on accumulating data, without sacrificing the trial validity and integrity (1-7). The 43 

demand for these designs is growing because they are flexible and can provide efficiency 44 

gains over conventional designs, often in terms of cost or time (1, 3, 6, 8). This flexibility is 45 

particularly beneficial in areas such as infectious diseases like COVID-19, oncology and rare 46 

diseases, where patient populations are small, and treatment effects need to be assessed 47 

rapidly (5, 9, 10). The most common pre-planned modifications are changes to the sample 48 
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size to declare treatment efficacy or futility (early stopping), ceasing randomisation to futile 49 

treatment arms (arm dropping), and modifying the allocation probabilities to each treatment 50 

arm (adaptive randomisation) (5, 6). These modifications can improve resource efficiency if 51 

fewer participants receive inferior treatment/s, or if the trial requires fewer participants 52 

overall when compared with a traditional fixed design (6). The group sequential design is an 53 

example of an adaptive design that incorporates multiple planned interim analyses, with pre-54 

specified rules for early stopping (11). A more complex example is the platform design, 55 

where multiple treatments are evaluated simultaneously, across a number of participant 56 

subgroups, under a single core protocol (12-15). Platform designs may have the benefit of 57 

using the same control group across multiple research questions and the ability to add new 58 

interventions as funds or supplies become available, but require careful planning around 59 

adaptation criteria and analysis, and more complex statistical modelling to account for non-60 

concurrent controls (16, 17).  61 

Despite their advantages and popularity, the uptake of adaptive designs has been slow 62 

amongst clinical trialists. This may be due to the practical challenges in their design and 63 

implementation, poor access to design expertise, reservations about acceptance by regulatory 64 

authorities, stakeholders and funders, and the complexity of interpreting the results (2, 5, 6).   65 

Adaptive designs can use either frequentist or Bayesian methods for design, inference, and 66 

decision making (or a combination thereof) (6, 11, 18). In a frequentist design, the decision to 67 

stop the trial early for efficacy or futility is typically made by comparing the p-value for a 68 

treatment effect, calculated within a hypothesis testing framework, against pre-defined 69 

stopping boundaries (18). For example, with a frequentist design the trial could be stopped 70 

for efficacy if the treatment effect p-value at an interim analysis is less than 0.005, a pre-71 

defined threshold chosen to control the false positive rate (α, the probability of rejecting the 72 

null hypothesis when there is truly no difference between the treatment arms) (18-21). In a 73 
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Bayesian design, these decisions are typically guided by the posterior probability of clinically 74 

relevant treatment effects, e.g., for superiority this may be the probability that the relative risk 75 

is less than one (18). For example, the trial could be stopped for efficacy if the posterior 76 

probability of treatment being superior to the control is greater than 0.95, where the pre-77 

defined threshold is usually chosen to control the frequentist false positive rate (22). 78 

Although type I error control is not formally required in a Bayesian design, it is common to 79 

report frequentist operating characteristics in these designs, particularly if the trial aims to 80 

satisfy regulatory requirements (6, 18, 23-27). Therefore, most Bayesian adaptive designs are 81 

a hybrid of frequentist and Bayesian methods as they are designed based on frequentist 82 

operating characteristics such as power and type I error, but the interim analyses and 83 

adaptation criteria are based on Bayesian inference and decision rules (6, 28-31). 84 

For simple adaptive designs, such as group sequential designs, established frequentist 85 

formulae can be used to determine the operating characteristics, such as power and type I 86 

error or the required sample size. However, many adaptive trials require computer simulation 87 

to estimate the operating characteristics and identify an efficient trial design. The operating 88 

characteristics will depend on the clinical phase of the trial and the degree of risk acceptable 89 

to the investigator, sponsor, and/or regulator, in addition to implementation feasibility (6, 32-90 

35). Simulation studies are widely used in statistics to evaluate and understand the 91 

performance of statistical methods (36, 37). More recently, simulation has become pivotal in 92 

the design of innovative clinical trials (7, 38-40). Simulation involves generating virtual (i.e., 93 

computer generated and hypothetical) trial data under different assumed clinical effects for 94 

the treatment and control arms, often referred to as scenarios (32). Data for thousands of 95 

‘virtual trials’ are generated and analysed and operating characteristics such as the power, 96 

type I error and sample size are summarised for each scenario. These scenarios can 97 

incorporate various design features such as the timing and number of interim analyses, the 98 
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decision rules for trial adaptations, and the number of treatment arms. Setting these design 99 

features usually happens via an iterative process, where results from a growing number of 100 

scenarios are discussed amongst the statisticians and clinicians and the design features are 101 

updated for the next batch of simulations; a cycle that continues until acceptable operating 102 

characteristics are achieved. This iterative process facilitates the communication of important 103 

trial decisions, which in turn builds confidence in the design and analysis prior to recruiting 104 

the first participant (33, 35) .  105 

A range of software exists for conducting simulations for adaptive trials including stand-106 

alone software (e.g., FACTS (41), ADDPLAN (42) and EAST (43)), packages within 107 

existing software such as R (44)(e.g., gsDesign (45), bayesCT (46), MAMS (47), asd (48), 108 

rpact (49)) and Stata (50)(e.g., nstage (51)), online trial simulators (e.g., HECT (52)) and 109 

custom written code that is sometimes available from the addendums to publications (34, 35, 110 

53-55). However, some software are limited in the availability of design options, while others 111 

may overwhelm the users with their availability of a wide range of design features (34). 112 

Owing to the limited capabilities or flexibility and the complexity of the available software, 113 

experienced programmers often find it more efficient to write their own code (34). This also 114 

offers the flexibility to deal with the unique nature of the wide variety of adaptive designs 115 

that may be used. However, there is currently a lack of guidance on developing code for 116 

conducting simulations, and on the general process for how these simulations are used to 117 

guide the trial design, although this approach may be unfamiliar to most clinicians and trial 118 

methodologists.  119 

The aim of this tutorial is to provide a step-by-step guide on how to write code to simulate 120 

trial data and how to interpret the output for a range of scenarios to inform the design of a 121 

simple adaptive trial with a single interim analysis. This process will be useful to both 122 

statisticians and clinical trialists wishing to implement adaptive designs. We provide the 123 
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simulation code in both R (within the main text) and Stata (in the supplementary material) 124 

using a modular coding structure to enhance comprehensibility and facilitate modifications to 125 

a range of adaptive designs. We focus our attention on a frequentist example, but the code 126 

could be adapted to incorporate Bayesian decision making. We illustrate the simulation and 127 

design process using a real-world example of the Paediatric Intravenous Maintenance 128 

Solution in reducing the risk of hyponatraemia in children in hospital (PIMS) trial, published 129 

previously (56). Although there were no adaptive elements in the original trial, we assume in 130 

this tutorial that the trial included a single interim analysis to illustrate the simulation and 131 

design processes. 132 

We begin by providing details of the PIMS trial in Section 2. In Section 3, we outline the 133 

simulation process and explain the code required to generate the simulations. We use a 134 

modular structure and introduce subroutines or functions for generating the different aspects 135 

of the trial data, which we call “building blocks”.  The building blocks are combined to 136 

produce a trial simulation that is run many times under a number of clinically relevant 137 

scenarios. In Section 4, we discuss the outputs of the simulation and how these should be 138 

summarised and interpreted. We conclude with a discussion on balancing the design options 139 

against the investigator/sponsor/regulator risk strategies in Section 5. 140 

2. Illustrative example: the PIMS trial 141 

2.1 Overview of the PIMS trial  142 

The PIMS trial was a two arm, parallel-group, randomised, double blind trial conducted at the 143 

Royal Children’s Hospital, Melbourne, Australia, to determine whether the use of a fluid 144 

solution with a higher sodium concentration reduced the risk of hyponatraemia compared 145 

with the use of a hypotonic solution. Participants were children aged 3 months to 18 years 146 

admitted to The Royal Children’s Hospital’s emergency department and presurgical wards, 147 
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who needed intravenous maintenance hydration for 6 hours or longer. 690 participants were 148 

randomised at a 1:1 ratio to either isotonic intravenous fluid containing 140 mmol/L of 149 

sodium (Na140) or hypotonic fluid containing 77 mmol/L of sodium (Na77) for 72 hours or 150 

until their intravenous fluid rate decreased to lower than 50% of the standard maintenance 151 

rate (50%-150% of the daily volume recommended by (57)). Randomisation was stratified by 152 

levels of baseline sodium concentrations (Low; <135 mmol/L, Normal; 135-145 mmol/L and 153 

High; >145 mmol/L). The primary outcome was occurrence of hyponatraemia (defined as 154 

serum sodium concentration <135 mmol/L with a decrease of at least 3 mmol/L from 155 

baseline) during the treatment period. A frequentist fixed trial design sample size was 156 

calculated, assuming 10% of the participants developed hyponatraemia in the Na77 group by 157 

72 hours, producing a total sample size of n=640 (320 per arm) to provide 80% power with a 158 

2-tailed 0.05 significance level to detect an absolute risk difference of 6% (calculated in 159 

nQuery (58) allowing for a continuity correction). An additional 25 participants were 160 

recruited in each arm to allow for missing data in the primary outcome, which was not 161 

incorporated into the original sample size calculation given the short time frame for the 162 

outcome.  163 

In the original study there were no planned interim analyses. For illustrative purposes in this 164 

tutorial, we assume that they planned to conduct a single interim analysis once half of the 165 

expected outcome events have occurred. At the interim analysis, we plan to (conservatively) 166 

declare efficacy if the p-value is less than 0.005. Using the traditional alpha spending 167 

framework, efficacy is declared at the final analysis if the p-value is less than or equal to 168 

0.045. Given this simple design, the sample size frequentist re-calculation is n=584 (292 per 169 

arm) to provide 80% power with a 2-tailed 0.045 significance level at the final analysis based 170 

on the Pearson chi-square test, to detect an absolute risk difference of 6% (equivalent to an 171 

odds ratio of 0.375). Note this is different to the original sample size calculation that used a 172 
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2-tailed 0.05 significance level. We use the design characteristics in the modified PIMS trial 173 

(with a single interim) and generate the trial data using simulation to demonstrate the 174 

expected power and sample size. Although simulation is not needed to determine the 175 

operating characteristics for this study design, we use it as an example so that we can check 176 

the results obtained from our formulaic computation above. 177 

2.2 Simplifying assumptions 178 

We made the following simplifying assumptions regarding the PIMS trial: 179 

1. There was no loss to follow-up. 180 

2. All sites would be active simultaneously and that the rate of recruitment would be 181 

constant, taking approximately 928 days, based on the recruitment rate in PIMS.  182 

3. The outcome was available immediately (rather than at 72 hours).  183 

4. A single interim analysis would take place once half of the expected cases of 184 

hyponatraemia have occurred (20 cases).  185 

The key features of the (modified) PIMS study design are outlined in Figure 1. 186 

3. The simulation process 187 

There are many design features to consider when planning an adaptive trial. The major 188 

considerations are the (fixed or varying) randomisation probabilities, the number and timing 189 

of interim analyses, and the decision criteria. Simulation over a range of scenarios ensures an 190 

efficient design is selected that answers the key study question(s) and balances the attitude to 191 

risk (32, 33). Setting these design features should be an iterative procedure between clinicians 192 

and statisticians. Data for thousands of trials are simulated for a number of different scenarios 193 

(reflecting pre-determined design characteristics that align with decision points and a range of 194 

clinical effect sizes and direction of effect). It is advisable that some of the scenarios should 195 
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be more extreme to determine how the trial adaptations would respond to unanticipated 196 

intervention effects.  The results from these simulations are aggregated and summarised to 197 

estimate the operating characteristics under each scenario (see Section 4) and should be 198 

discussed with the clinical team (32, 33, 59, 60). Once an initial set of simulation results has 199 

been obtained, the design characteristics may require adjustment, e.g., to increase the power 200 

or reduce the type I error. This process is repeated until an appropriate design with desired 201 

characteristics (such as 80% power, 5% type I error and feasible expected sample size 202 

meaningfully lower than the fixed design) has been identified. The scenarios considered 203 

should be discussed with the clinical experts and should contain a mixture of plausible and 204 

extreme scenarios reflecting various clinical effects, to provide a good understanding of how 205 

the operating characteristics change with varying treatment effects (for example different 206 

response/event rates or mean outcome in each treatment arm). This iterative procedure is 207 

outlined in Figure 2. 208 

When programming the simulations, it is helpful to break each trial into manageable chunks 209 

or modules that represent the stages of a trial (32). For example, we start by generating the 210 

randomisation list, followed by recruiting participants, and then we follow them up and 211 

collect outcome data either at visits or at the end of the trial period, and then we analyse the 212 

data. We refer to the subroutines or functions that generate each stage of the trial as “building 213 

blocks”. This modular approach makes it easy to navigate through the code, enabling 214 

convenient troubleshooting, re-use and development. The code for simulation also needs to 215 

be flexible to be able to be updated with the changing trial design, as we typically want to 216 

compare multiple candidate designs with the aim of identifying an efficient design (32). For 217 

example, a common aim of simulation is to determine the decision criteria to declare 218 

efficacy/success or futility/lack-of-benefit of the treatment(s) or trial at interim(s) and at final 219 

analysis.  220 
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In this tutorial, we generate and save the complete trial data up to the maximum recruitment 221 

and then assess the decision criteria at the interim analysis (using the available data) and the 222 

final analysis (using all of the data). The post-processing of the interim data means we can 223 

evaluate different decision criteria (e.g., success/futility thresholds) easily without generating 224 

the entire dataset repeatedly, provided that we have sufficient computational storage. The 225 

alternative is to assess the decision criteria once sufficient data has been generated for each 226 

interim and either continue or stop data generation depending on whether the decision 227 

threshold(s) is met. The latter approach is computationally inefficient when evaluating 228 

different decision criteria, however may still be needed to assess the operating characteristics 229 

of some designs such as in response adaptive randomisation (61). Figure 2 shows a schematic 230 

of our simulation process. In the following sections we illustrate the simulation process in R; 231 

equivalent Stata code is presented in the supplementary material. 232 

3.1 Building block 1: randomisation 233 

The first step is to simulate the treatment assignment for the trial participants up to the 234 

maximum trial size. This may be via simple randomisation, blocked randomisation, stratified 235 

randomisation or more complex dynamic approaches such as minimisation (62-64). We will 236 

focus on the most common method, block randomisation, which was employed in the PIMS 237 

trial. 238 

Let n be the maximum sample size of a simulated trial, which is typically the sample size for 239 

which the study is powered to identify a clinically meaningful effect size (n= 584 in PIMS 240 

trial; see Section 2) at the final analysis but is more commonly the feasible recruitment target 241 

over the trial recruitment period. The ‘simRandomisation’ function below generates the 242 

treatment arm allocation for each participant in the trial. In the PIMS trial, the participants are 243 

randomised using a 1:1 allocation ratio with block randomisation using block sizes of 4. To 244 

reflect this, we first generate blocks of size 4 (block: 1 to 4) and then a treatment indicator 245 
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(trt: coded as 0 for control, i.e. Na77 group, and 1 for the Na140 group) such that two 246 

participants are allocated to each treatment arm within each block. Next, a vector of random 247 

numbers is generated from a uniform distribution between 0 and 1, and the observations are 248 

ordered by these random numbers within each block. This determines the order of treatment 249 

assignments within the block and results in a sequential list of treatment allocations for 250 

consecutively recruited participants in the trial. The input for this function is the trial 251 

maximum sample size (n). For simplicity, the allocation ratio of 1:1 and block size of 4 have 252 

been coded within the function. Alternatively, one could extend the function to allow the 253 

block size and the allocation probabilities to vary by including these as input variables. The 254 

output from this function is an R dataframe (dataset) with participant ID (1:n) and the 255 

treatment allocation (0 or 1) for each of the n participants.   256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 
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simRandomisation <- function(n) 268 

{ 269 

  # A sequence indicating block. 270 

  block <- rep(seq(1:n), each = 4, length.out = n) 271 

  # A sequence indicating treatment. 272 

  trt <- rep(0:1, length.out = n)    273 

  # A random number on unit interval. 274 

  random <- runif(n)                                 275 

  # Create a data frame 276 

  data <- data.frame(block, trt, random)             277 

  # Order by block and then by random to create block randomised treatment 278 

  data  <- data[order(data$block, data$random),] 279 

  data$obs_no <- 1:n 280 

  data <- data[,c('obs_no', 'trt') ]       281 

  return(data) 282 

} 283 

3.2 Building block 2: simulate trial recruitment 284 

The second step is to simulate each participant’s time of recruitment. Generating the 285 

participant accrual times should be based on a plausible recruitment rate (in days, weeks or 286 

months) across the sites. One option is to assume that participant accrual occurs at a constant 287 

rate over time from study commencement. More realistically, sites commence at different 288 

times and recruitment may ramp-up until it reaches a constant rate at which it remains until 289 

recruitment is complete. Some trials may also experience a ramp-down phase as the trial 290 
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nears the end of recruitment. When simulating participant accrual, it is important to build in 291 

some variability to the recruitment process as this may affect the operating characteristics. 292 

Participant accrual times can be generated using the function ‘simAccrual’. In the code 293 

below, we assume that participant accrual is constant over time and would take 928 days. The 294 

code generates n (the maximum sample size) random numbers from a uniform distribution 295 

between 0 and 1 and multiplies each by the length of the recruitment period (e.g., 296 

recruit_period: 928 days in the PIMS trial). The inputs to this function are the trial maximum 297 

sample size (n) and the length of the recruitment period (recruit_period); the output is a 298 

vector of the ordered accrual times for the n participants (accrual_time). 299 

simAccrual <- function(n, recruit_period) 300 

{ 301 

  # Generate recruitment times: Simulate trial-time that patient enters the 302 

trial. 303 

  # Adding 0.5 ensures the recruitment times are greater than day 1 when ro304 

unded. 305 

  accrual_time <- round(runif(n) * recruit_period + 0.5)   306 

  accrual_time <- sort(accrual_time) 307 

  return(accrual_time) 308 

} 309 

3.3 Building block 3: generate participant outcomes 310 

The third step is to simulate the participant outcomes under a specific scenario. Participant 311 

outcomes should be generated from the relevant probability distributions based on the 312 

outcome variable. For example, if the outcome is a binary variable (i.e., coded as 0 or 1), data 313 

can be simulated from a binomial distribution; if the outcome is a continuous variable, data 314 
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can be simulated from a normal distribution; and if the outcome is a time-to-event variable, 315 

then data can be simulated from either the exponential or Weibull distribution.  316 

In this tutorial, data are simulated using the ‘simTrialData’ function below, which has nested 317 

calls to the first two building blocks (‘simRandomisation’ and ‘simAccrual’). In the PIMS 318 

trial, the outcome (hyponatraemia by 72 hours) is binary, and we assume that it is available 319 

for all participants immediately, hence we simulated it using a binomial distribution, with 320 

different event probabilities depending on whether the participant is allocated to the Na77 or 321 

Na140 arm (as defined in the scenarios). We define p as the vector of event probabilities for 322 

the two arms. Notice that the treatment allocation (trt) is coded as 0 for control (Na77) and 1 323 

for treatment (Na140), therefore, when the outcome is generated, the rbinom function selects, 324 

the probability in vector position 0+1=1 for control and vector position 1+1=2 for treatment 325 

from vector p. The input to the ‘simTrialData’ function is the maximum sample size (n), the 326 

length of the recruitment period (recruit_period) and the vector of event probabilities (p), 327 

which will depend on the scenario under consideration. The output is a dataset for a single 328 

trial with n rows (one for each participant) and 4 columns representing participant ID 329 

(obs_no), randomised treatment allocation (trt), accrual time (accrual_time) and outcome 330 

(event).    331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 
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simTrialData <- function(n, recruit_period, p) 340 

{ 341 

  # Simulate random allocation. 342 

  data <- simRandomisation(n) 343 

  # Simulate recruitment times 344 

  data$accrual_time <- simAccrual(n, recruit_period)    345 

  # Simulate events from binomial distribution with respective probabilitie346 

s of events for control and treatment arms 347 

  data$event  <- rbinom(n, 1, p[data$trt+1])  348 

  # Return the simulated trial data. 349 

  return(data) 350 

} 351 

3.4 Building block 4: identify the data available at the interim analysis 352 

For trials that include pre-planned interim analyses, a fourth step is needed to identify and 353 

extract the data available at the time of each interim analysis. This requires identifying 354 

participants with outcomes available at the time of the interim analysis, based on their 355 

recruitment time and time to outcome, and extracting these data. When planning if and when 356 

to conduct an interim analysis, it is important to consider the time frame of the outcome 357 

relative to the recruitment period. For example, some, but not all, outcome data must be 358 

available prior to the first interim analysis. In addition, the maximum recruitment target 359 

should not be met prior to the scheduled interim analyses. Trials with a short recruitment 360 

period (e.g., weeks) relative to the time to outcome (e.g., years) are generally unsuitable for 361 

interim analyses. 362 
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The data available for an interim analysis can be identified using the function 363 

‘simInterimData’. In the code, we assume that the outcome is available immediately after 364 

recruitment and the time of the interim analysis is when a pre-determined number of events 365 

(cases of hyponatraemia; events_at_interim = 20 events) have occurred. Since the data are 366 

ordered by participant recruitment times (see Section 3.2), we can compute the cumulative 367 

number of events (cum_events) using a running total of the column containing the outcome 368 

data and the participant ID (obs_no) at which 20 events are accumulated (i.e., when 369 

cum_events = 20) indicates the planned time of our interim analysis (interim_ind). In this 370 

example, as there is no time lag between recruitment and outcome assessment, the outcomes 371 

at the interim (event_interim: 0 or 1) would be the same as the outcomes at the final timepoint 372 

(event) for participants included in the interim analysis (i.e., for observations where obs_no 373 

<= interim_ind).  374 

The input to this function is the simulated trial dataset (data) and the number of events 375 

triggering the interim analysis (events_at_interim) and the output is the trial dataset with 376 

additional columns for the data included in the interim analysis (includes cum_events, 377 

interim_ind, event_interim). Note that the event_interim variable has missing values for all 378 

the participants recruited after the interim timepoint. These participants will be excluded from 379 

the interim analysis (see Section 3.5). Alternatively, the user may choose to only extract the 380 

data up to the interim timepoint and output it as a separate truncated dataset (data_interim; 381 

shown within the comments of code below) and then use this dataset as an input to the 382 

interim analysis function (Section 3.5). The ‘simInterimData’ function can be modified to 383 

reflect multiple interims performed when a fixed number of new participants have accrued 384 

(e.g., every 20) and to allow a lag time between recruitment and outcome assessment (e.g., 385 

outcome at 2 weeks).  386 

 387 
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simInterimData <- function(data, events_at_interim) 388 

{ 389 

  # Obtain the cumulative number of events 390 

  data$cum_events <- cumsum(data$event)    391 

  # observation number at which interim occurs  392 

  data$interim_ind <- data$obs_no[min(which(data$cum_events == events_at_in393 

terim))] 394 

  #Events at interim 395 

  data$event_interim <- with(data, ifelse(obs_no<= interim_ind, event, NA)) 396 

  #you can also extract the interim data set and output it separately as be397 

low 398 

  #data_interim <- subset(data, !is.na(data$event_interim),])   399 

  #return(data_interim) 400 

  return(data) 401 

} 402 

3.5 Building block 5: analyse the trial data 403 

The fifth and final step is to conduct the analysis of the trial data. This function is generic and 404 

can be used for the analysis at an interim and at the end of the study. Generally, only the 405 

primary outcome is analysed to compare the treatments against the control, based on 406 

participants with available data up to that timepoint. The test statistics are evaluated against 407 

decision criteria to determine which treatment arms will continue to have new participants 408 

assigned to them, which treatment arms will have no further new assignments (i.e., arm 409 

dropped at interim), and whether the trial has reached a conclusion that triggers the final 410 

analysis (which would include the analysis of all secondary endpoints). In the modified PIMS 411 
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trial, whether or not a simulated trial would have stopped recruitment (due to superiority of 412 

the treatment arm over control) at an interim analysis is assessed by comparing the test 413 

statistics against the pre-defined stopping boundaries, i.e., evaluating whether the interim p-414 

value is less than 0.005. Some quantities that can be useful to output from the analysis are: 415 

1. Whether the trial would have stopped before maximum recruitment at each interim 416 

analysis 417 

2. Point estimate and confidence interval for the treatment effect (for example, odds 418 

ratio or relative risk) at the final analysis (which may be at the interim timepoint if the 419 

study was stopped early). 420 

3. The sample size at the time the trial was stopped (including when maximum 421 

recruitment was reached).  422 

4. Whether the study would have found evidence of clinically relevant treatment effects 423 

or if the trial was inconclusive. 424 

The function ‘analyseData’ can be used to analyse the data for each trial at each scheduled 425 

analysis and evaluate decision criteria for adaptations. It calculates the test statistic using a 426 

statistical model (in the PIMS trial, it is a logistic regression model) for the statistical 427 

hypothesis being explored, e.g., whether treatment is superior to control. It then compares the 428 

test statistics against the pre-defined decision threshold and determines whether the criterion 429 

for stopping recruitment at the interim timepoint has been met, in addition to whether the trial 430 

conclusion is reached before maximum recruitment. The results from each analysis, such as 431 

the estimate of the effect size and associated confidence interval and whether decision 432 

thresholds are met at interim(s) and final analysis, are saved as the output.  433 

Specifically, the following steps are carried out in the ‘analyseData’ function: 434 
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1. Compute the proportion of participants with an event in the control (pevents0) and 435 

treatment (pevents1) arms at maximum recruitment (end of the trial) or at the interim 436 

if the trial stopped early. 437 

2. Conduct a logistic regression to compare outcomes between the treatment and control 438 

arms at the interim analysis. 439 

3. Assess the decision criteria at the interim time point, i.e., is the p-value for the log 440 

odds ratio for treatment compared to control (interim_p) less than the decision 441 

threshold at the interim (alpha_interim). If true, then stop recruitment to the trial at 442 

the interim and declare efficacy/success (i.e., interim_stop = 1), otherwise continue 443 

recruitment.  444 

4. Conduct a logistic regression to compare outcomes between the treatment and control 445 

arms at the final analysis. 446 

5. Assess the decision criteria at the final analysis and declare efficacy/success if the p-447 

value for the log odds ratio for treatment compared to control (final_p) is less than the 448 

decision threshold at the final analysis (alpha_final), otherwise declare futility. 449 

6. Record the trial conclusion in the variable final_stop, where final_stop = 1 if the 450 

treatment was determined to be efficacious compared to control, or final_stop = 0 451 

otherwise. 452 

The inputs to this function are the simulated dataset from “siminterimData” (data) and the 453 

decision thresholds at each time point (alpha_interim and alpha_final). The decision 454 

thresholds are usually chosen by simulation to control the false-positive error and should be 455 

pre-specified in the trial protocol. Users may be interested in exploring different thresholds as 456 

part of the simulation exercise. The output is a summary of the results from the interim and 457 

final analyses (results), including the number and proportion of events in each treatment arm 458 

(nevents0, nevents1, pevents0, pevents1), the sample size (sample_size: which is either the 459 
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number of participants recruited at the interim if the trial stopped early or the maximum 460 

sample size n, otherwise), the time of the interim (interim_time), the effect sizes (odds ratios) 461 

and confidence intervals at the interim and at the final analysis (interim_or, interim_lci, 462 

interim_uci, final_or, final_lci, final_uci), the p-values at the interim and final analysis 463 

(interim_p, final_p), whether the trial reached an efficacy conclusion at the interim and final 464 

time points (interim_stop, final_stop), whether the trial was conclusive (stop: 1, if trial met 465 

the decision threshold at the interim or final analysis, or 0, otherwise) and the probability of 466 

trial flip-flopping (flipflop: 1, if the trial met the decision threshold at the interim but not at 467 

the final analysis, or 0, otherwise).    468 

analyseData <- function(data, alpha_interim, alpha_final) 469 

{ 470 

  nevents0 <-  sum(data$event[data$trt == 0]) 471 

  nevents1 <-  sum(data$event[data$trt == 1]) 472 

  pevents0 <- nevents0/sum(data$trt == 0) #proportion of events in control 473 

group 474 

  pevents1 <- nevents1/sum(data$trt == 1) #proportion of events in treatmen475 

t group 476 

  ############################################### 477 

  #Interim analysis: logistic regression 478 

  data$event_interim  <- factor(data$event_interim) 479 

  modellogit_int <- glm(event_interim ~ trt, data = data, family = "binomia480 

l") 481 

  conf_int       <- confint(modellogit_int) 482 

  #results at interim from the summary object 483 

  interim_or   <- exp(coef(modellogit_int)["trt"]) #the treatment effect  484 
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  interim_lci  <- exp(conf_int["trt", "2.5 %"])  #the confidence interval l485 

ower limit 486 

  interim_uci  <- exp(conf_int["trt", "97.5 %"])  #the confidence interval 487 

upper limit  488 

  interim_p <-    coef(summary(modellogit_int))["trt", "Pr(>|z|)"] #the p-v489 

alue  490 

  # stop for trial success at interim? 491 

  interim_stop <- ifelse(interim_p < alpha_interim, 1, 0)                                492 

  #The proportion of events if the trial stopped at the interim 493 

  if(interim_stop == 1){ 494 

    nevents0 <-  sum(data$event[data$trt == 0 & !is.na(data$event_interim)]495 

) 496 

    nevents1 <-  sum(data$event[data$trt == 1 & !is.na(data$event_interim)]497 

) 498 

    pevents0 <- nevents0/sum(data$trt == 0 & !is.na(data$event_interim))  499 

    pevents1 <- nevents1/sum(data$trt == 1 & !is.na(data$event_interim))  500 

  } 501 

  ############################################### 502 

  #Final analysis: logistic regression 503 

  data$event <- factor(data$event) 504 

  modellogit <- glm(event ~ trt, data = data, family = "binomial") 505 

  conf       <- confint(modellogit) 506 

  #results at final analysis from the summary object 507 

  final_or   <- exp(coef(modellogit)["trt"]) #the treatment effect 508 
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  final_lci  <- exp(conf["trt", "2.5 %"]) #the confidence interval lower li509 

mit  510 

  final_uci  <- exp(conf["trt", "97.5 %"]) #the confidence interval upper l511 

imit 512 

  final_p    <- coef(summary(modellogit))["trt", "Pr(>|z|)"] #the p-value  513 

  final_stop <- ifelse(final_p < alpha_final, 1, 0) 514 

  #whether the trial is conclusive. 515 

  stop <- ifelse(interim_stop == 1, interim_stop, final_stop) 516 

  #sample size 517 

  if(interim_stop == 1){ 518 

 sample_size <- unique(data$interim_ind) 519 

  } else { 520 

 sample_size <- nrow(data) 521 

  } 522 

  # trial flip-flop 523 

  flipflop <- ifelse(interim_stop == 1 & final_stop == 0, 1, 0) 524 

  # results 525 

  results    <- data.frame(nevents0, nevents1,  526 

                           pevents0, pevents1, 527 

                           sample_size, 528 

                           interim_time = unique(data$interim_ind),  529 

                           interim_or, interim_lci, interim_uci, interim_p,  530 

                           interim_stop, 531 

                           final_or, final_lci, final_uci, final_p,  532 
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                           final_stop, stop, flipflop) 533 

  return(results) 534 

} 535 

3.6 Simulating a single trial 536 

The building blocks above (functions in sections 3.3 to 3.5) can be put together to conduct the 537 

simulations for a single trial. We begin by simulating a single trial which assists in debugging 538 

the code and identifying whether all relevant results have been captured. We define a number 539 

of global parameters (which represent the simulation inputs) described below, and then 540 

sequentially run each step using the ‘runTrial’ function. 541 

Inputs 542 

In order to simulate trial data, we must specify a number of global parameters to use in our 543 

simulation. Below we outline the global parameters we use for the PIMS trial:  544 

1. The random seed to ensure reproducibility of the data and outputs. 545 

2. The recruitment period, which for the PIMS trial we assumed to be 928 days. 546 

3. The maximum trial sample size (n= 584 for PIMS trial).   547 

4. The number of events required to trigger an interim analysis (20 cases of 548 

hyponatraemia in PIMS trial). 549 

5. The proportion with the event in the treatment and control arms. This is expressed as a 550 

vector, where the values depend on the scenario for which data is being generated. 551 

Initially we set these as p0 = 0.10 and p1 = 0.04 which we denote as the ‘as powered’ 552 

scenario. 553 

6. The decision thresholds, which were set to match the fixed-design sample size 554 

calculation, i.e., 0.005 at the interim and 0.045 at the final analysis (alpha_interim = 555 

0.005, alpha_final = 0.045). 556 
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It is useful to define the input parameters in one place so that this list can be easily accessed 557 

for reference at any time and can be updated to explore alternative designs or scenarios. In 558 

the PIMS example, we use the following code to detail the inputs.  559 

# The random seed to ensure reproducibility 560 

seed                   <- 48376491   561 

# Recruitment period = Days in 2.5 years. 690 patients in 3 years (365.25*3562 

days) 563 

recruit_period     <- 365.25*3*584/690       564 

#584 participants:2.5 years(927 days) 565 

# Maximum trial sample size. 566 

n                    <- 584  567 

# The number of events at the interim: half recruitment (584/2 = 292; 292*(568 

.1+.04)/2=20 events) 569 

events_at_interim  <- 20                   570 

#event probabilities 571 

# Event probability in Na77 at 72 hours 572 

p0      <- 0.10  573 

# The event probability for Na140 arm 574 

p1      <- 0.04  575 

# vector of event probabilities 576 

p       <- c(p0,p1)                              577 

# Decision thresholds/boundaries (alpha) 578 

# At final analysis 579 
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alpha_final       <- 0.045   580 

# At the interim 581 

alpha_interim   <- 0.005      582 

The function ‘runTrial’ below uses the previously defined building blocks to simulate data 583 

for a single trial: 584 

1. Building block 3: ‘simTrialData’ simulates the trial data (calls ‘simRandomisation’ 585 

and ‘simAccrual’) 586 

2. Building block 4: ‘simInterimData’ identifies the data for the interim analysis 587 

3. Building block 5: ‘analyseData’ analyses the trial data 588 

The inputs are the maximum sample size (n), the recruitment period (recruit_period), the 589 

vector of event proportions in the treatment arms (p), the number of events to trigger the 590 

interim (events_at_interim) and the decision thresholds at the interim(s) and final analysis 591 

(alpha_interim and alpha_final, respectively). The output is a list containing the simulated 592 

dataset (data) and the results from the analyses of interim and final data (results). 593 

runTrial <- function(n, recruit_period, p, events_at_interim, alpha_interim594 

, alpha_final) 595 

{ 596 

  #Step1: simulate the trial data 597 

  data    <- simTrialData(n, recruit_period, p) 598 

  #Step2: create interim data 599 

  data    <- simInterimData(data, events_at_interim) 600 

  #Step3: analyse the data 601 

  results <- analyseData(data, alpha_interim, alpha_final) 602 

  return(list(data = data, results = results)) 603 
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} 604 

This function can be executed to generate the trial data for a single trial using the following 605 

code:  606 

set.seed(seed) 607 

results_single_trial <- runTrial(n, recruit_period, p,  608 

                                 events_at_interim, alpha_interim,  609 

                                 alpha_final) 610 

results_single_trial$results 611 

The output generated from this function is illustrated in Table 1. The output includes the 612 

simulated dataset, the results from the analyses and the evaluation of the decision criteria. 613 

The results (contained within results_single_trial$results) includes the variables described in 614 

Section 3.5 (output from the function ‘analyseData’).  615 

3.7 Simulating multiple trials 616 

The ‘runTrial’ function simulates data for a single trial. However, a single trial is not 617 

representative of what to expect for a particular scenario, i.e., some simulated trials will have 618 

more extreme intervention effects than others. It is therefore important to simulate many trials 619 

for each scenario of interest to understand how our trial design could plausibly perform 620 

accounting for the variability in the trial. To do this we create a function, ‘runMultipleTrials’, 621 

that repeatedly executes the ‘runTrial’ function and saves the summary for each trial. Note 622 

that we can save all the simulated trials/datasets (using ‘saveRDS’ in the function below). 623 

This may take up a considerable amount of space depending on the number of simulations; 624 

however, it can be useful if additional summary measures may be required in the future.  625 
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The inputs required for the ‘runMultipleTrials’ function (in addition to the global parameters) 626 

are the random seed (seed) and the number of trial data sets to be simulated (simno). Note 627 

that setting the seed once before running any of these functions will make the results 628 

reproducible. However, in this implementation we have used seed within the function to 629 

make it explicit and part of the function, so that the code can be executed in isolation. The 630 

output of this function is a list containing a data frame of the results as returned by the 631 

‘analyseData’ function for each of the trial datasets simulated (results_all), a data frame with 632 

the statistical summaries of the results across all of the simulated trials (results_summary) 633 

and the seeds used for reproducibility (seeds).  634 

runMultipleTrials <- function(simno, seed, n, recruit_period, p,  635 

   events_at_interim, alpha_interim, alpha_final) 636 

{ 637 

  #Random seeds, length should be equal to the simno 638 

  seeds <- seed + seq(1:simno)   639 

  #simulate datasets 640 

  multiple_trials <- lapply(1:simno, function(x) { 641 

    set.seed(seeds[x]) 642 

    y <- runTrial(n, recruit_period, p, events_at_interim, alpha_interim,  643 

     alpha_final) 644 

    return(y) 645 

}) 646 

  #summarise results 647 

  results <- lapply(multiple_trials, function(x) return(x$results)) 648 

  results_all <- do.call(rbind, results) 649 
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  saveRDS(multiple_trials, file = 'results_multitrials.rds') 650 

  #Remove any simulations with non-estimable CIs and calculate the summary 651 

  x <- which(apply(results_all, 1, function(x) any(is.na(x)))) 652 

  if(length(x) > 0){ 653 

 results_summary <- apply(results_all[-x,], 2, summary) 654 

  } else { 655 

 results_summary <- apply(results_all,2,summary) 656 

  } 657 

  return(list(results_all = results_all, 658 

              results_summary = results_summary,  659 

       seeds = seeds))   660 

} 661 

For the PIMS trial we generated 5,000 simulated datasets (simno = 5,000) for each scenario, 662 

which is appropriate for the expected accuracy of the summary measures across simulations 663 

(larger numbers tend to give more accurate estimates) given the computational burden. 664 

Simulation of more complex trials may need larger numbers. Practically, it can be useful to 665 

start with a much smaller number of simulations (e.g., simno = 10 or 100) to ensure that the 666 

function is working as expected, before increasing to a larger number to compare the choice 667 

of design parameters. The ‘runMutipleTrials’ function can be executed using the code below. 668 

simno <- 5000 669 

results_multi_trials <- runMultipleTrials(simno, seed, n, recruit_period,  670 

                                          p, events_at_interim,  671 

         alpha_interim, alpha_final) 672 
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results_multi_trials$results_summary 673 

The summary output from this function is presented in Table 2 for the ‘as powered’ scenario. 674 

It includes the statistical summaries (minimum, 1st quartile, median, mean, 3rd quartile and 675 

maximum) of all of the output variables in the ‘results’ dataset from the ‘analyseData’ 676 

function (see Section 3.5) across the 5,000 simulated trials (e.g., mean sample size for the 677 

5,000 simulated trials).  678 

4. Simulation Outputs 679 

4.1 Scenarios 680 

As discussed previously, trial simulation involves evaluating the trial operating 681 

characteristics for a range of different scenarios (59). Most of these scenarios should be based 682 

on plausible quantities for effect sizes between treatment arms according to expert option and 683 

pilot studies. However, it is important to consider some extreme scenarios to develop a good 684 

understanding of how the trial might perform if these extreme scenarios arise in practice, 685 

such as if effect sizes were much larger or much smaller than current evidence. For the PIMS 686 

trial, the scenarios that could be considered are outlined in Table 3. The ‘null’ scenario 687 

represents the scenario where there is no difference in the primary outcome between Na140 688 

and the Na77 groups, and the ‘as powered’ scenario represents the scenario used in the 689 

original fixed-design sample size calculation. We have also considered two ‘extreme’ 690 

scenarios where the treatment effect is smaller and larger than the expected effect. 691 

To evaluate the trial operating characteristics for each of the scenarios we use the function 692 

‘runMultipleTrials’ changing the input parameters regarding the primary outcome. We 693 

demonstrated the ‘as powered’ in Section 3.7 above (p0 = 0.10 for control arm, p1 = 0.04 for 694 

treatment arm).  In Tables 4 and Supplementary Tables 1 and 2 we present the summary of 695 
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the results across 5,000 simulated trials for ‘the null hypothesis’ scenario, ‘smaller difference’ 696 

scenario and ‘larger difference’ scenario respectively. 697 

4.2 Interpreting the output 698 

Once we have run many simulations per scenario, we use the summary measures from these 699 

scenarios to tell us about the operating characteristics of the design as described below.  700 

4.2.1 Operating characteristics of interest 701 

Probability of trial success when there is no treatment difference (Type I Error) 702 

One of the key operating characteristics is the type I error. The type I error is the probability 703 

of rejecting the null hypothesis (i.e., declaring a trial success or identifying a treatment effect) 704 

when there is no treatment effect. We often aim to control the type I error to be below 5%. 705 

From our simulation outputs, the type I error is estimated by the proportion of trials that 706 

conclude as a success (i.e., declared a difference between treatment arms) in the ‘null 707 

hypothesis’ scenario, where there truly was no difference between the treatment and control 708 

arms (11). The mean value of the stop variable (whether the trial was conclusive at the 709 

interim or final analysis) across all simulated datasets under the ‘null hypothesis’ scenario 710 

provides an estimate for the type I error.  711 

Probability of trial success when the intervention is truly superior (Power) 712 

Another important operating characteristic to consider is the power of the trial. The power of 713 

the trial to detect a treatment effect is reflected in the proportion of successful trials (i.e., 714 

those that declare a difference between treatment arms) where there truly is a difference 715 

between the intervention arms. For example, the power of the trial to detect the treatment 716 

effect in the original sample size calculation of the PIMS trial can be estimated using the 717 

mean value of the stop variable in the ‘as powered’ scenario. That is the proportion of trials 718 
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that conclude the treatment arm is superior to the control arm at the interim or final analysis 719 

in the ‘as powered’ scenario.   720 

Probability of stopping at the interim analysis  721 

The probability of the trial stopping at the interim analysis due to reaching a decision 722 

threshold is another operating characteristic of interest. This is calculated from the mean 723 

value of interim_stop variable across simulated trials for a given scenario. 724 

Mean number of participants per trial  725 

The mean sample size (sample_size) can be used to assess average reduction in trial size due 726 

to the inclusion of interim analyses. This gives an indication of the usefulness of the interim 727 

analysis(es), if we can save both time and resources without recruiting further participants or 728 

collecting further follow-up data.  729 

Probability of the trial “flip-flopping”  730 

The probability of a ‘flip-flop’ is another characteristic that may be of interest to explore in 731 

the simulation output. This occurs when a given simulated trial is flagged as reaching a 732 

decision threshold at an interim analysis, but the critical value for declaring a difference at the 733 

final analysis is not met. This is also known as the “false stopping probability”, where we 734 

would stop the trial at the interim analysis for success or futility (interim_stop = 1), however, 735 

if we had continued the trial until final analysis this decision threshold would not have been 736 

reached (final_stop = 0) (65). The trial should be designed such that this probability is small. 737 

Often this probability can be minimised by the choice of decision threshold (11). The 738 

probability of a flip-flop can be obtained using the mean value of the flipflop variable in the 739 

output. 740 

Estimated treatment effects (is the model doing its job?) 741 
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A final output that may be of interest is the estimated treatment effect(s) and the confidence 742 

intervals from the final analysis or at the interim analysis if the trial stops at the interim. This 743 

output can be useful to check model bias and to ensure that these quantities reflect the true 744 

values we used in the simulation. 745 

4.3.2 Outputs from PIMS  746 

In the PIMS trial, the proportion of trials that conclude the intervention is superior to control 747 

in the null scenario (i.e. type I error) is 0.043 (Table 4). This reflects the alpha value (type 1 748 

error) for the final analysis that was used in the modified sample size calculation 749 

(alpha=0.045). The probability of trial success under the ‘as powered’ scenario is 0.8 (Table 750 

2), which reflects the 80% power obtained for this treatment effect in the modified sample 751 

size calculation. The probability of the trial stopping at the interim analysis for efficacy in the 752 

‘as powered’ scenario is 0.13 (Table 2). Under this scenario, the average sample size is 545, 753 

which is slightly lower than the maximum sample size of 584 from the modified sample size 754 

calculation as expected. The mean estimates of the odds ratio at the final analysis (final_or), 755 

its confidence interval (final_lci, final_uci) and the p-value for the difference between the two 756 

treatment groups (final_p) are 0.39 [0.19, 0.77], p = 0.04 (Table 2). This is close to the odds 757 

ratio of 0.375 used in the modified sample size calculation. The probability of trial flip-758 

flopping is 0.001. 759 

5. Discussion 760 

Adaptive trials are gaining popularity due to their flexibility and efficiency (6, 66). When 761 

designing adaptive trials, simulation is often required to select the most appropriate design, 762 

explore the trial operating characteristics, and determine the expected sample size. Simulation 763 

requires statistical programming skills that involve data generation, manipulation and 764 

generating appropriate summaries. It can be computationally intensive due to the range of 765 
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design parameters and assumptions to be explored (e.g., effect sizes, decision criteria, number 766 

and timing of interim analyses, maximum sample sizes) and the potentially large number of 767 

scenarios to explore (32, 33, 59).  768 

In this tutorial, we have shown how to simulate an adaptive trial and provided example code 769 

in R and Stata. For simplicity, we focused on a simple parallel-group study with a single 770 

interim analysis, where the operating characteristics were known so that we can replicate the 771 

results in the simulations. In practice, the operating characteristics are unknown and cannot 772 

be simply derived without the use of sometimes complex simulation. The simulation process 773 

often involves numerous iterations of setting the design features/parameters and running 774 

simulations across a range of potential scenarios (32, 33, 59). This is generally through a 775 

feedback loop between the clinical and the statistical teams, where initially the scenarios are 776 

defined based on historical or pilot data from the clinical team and the inputs to the functions 777 

are updated based on the output from previous simulation runs. This process is repeated until 778 

desirable statistical properties are achieved across all plausible scenarios and risk is assessed 779 

for unexpected scenarios, thus determining an efficient trial design. We hope this tutorial will 780 

make this process more accessible to both statisticians and clinicians. 781 

The simulation process has been described in a previous tutorial by Hansen et. al. (67), 782 

although this previous tutorial focussed on the use of BUGS, a Bayesian program language 783 

that may not be familiar to most statisticians and clinicians, and the implementation of the 784 

coding rather than the full design process, including review cycles that use the results from 785 

successive simulations to hone in on an efficient trial design. Our tutorial builds on this by 786 

providing code in R and Stata, two common statistical packages, and guidance on the 787 

presentation and interpretation of the simulation results which we hope will make this process 788 

more accessible to both statisticians and clinicians. 789 
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The modular coding structure we have used in our tutorial (Figure 2) also makes our 790 

approach appealing, as it makes it easy to troubleshoot and modify aspects of the code 791 

without having to amend the full code. It also provides the flexibility of exploring many 792 

scenarios and design parameters using the same set of building blocks. When conducting 793 

simulations for guiding study planning, the code should be written in a way that can be used 794 

and modified for multiple scenarios and design characteristics efficiently. It is also important 795 

to ensure computational efficiency as simulating complex adaptive designs are much more 796 

time consuming than standard trials. If you have access to multiple Central Processing Units 797 

(CPUs), efficiency can be improved by running several R sessions in parallel. We have 798 

provided an example of the use of parallel processing for the simulation in the hope of 799 

improving computational efficiency within the supplementary materials. 800 

When simulating data for a particular trial design, we recommend starting by simulating a 801 

single trial and exploring the results to identify any errors in the codes, and whether the 802 

desired results are stored appropriately. As a second step, multiple trials should be simulated 803 

initially simulating 5–10 trials to check the summaries across the simulated trials, before 804 

simulating a large number (over 1,000) of trials. This staged process ensures that once a large 805 

number of simulations are being run, the analyst has confidence in the results. The output 806 

from a single trial can also be used as a training tool for Data Safety and Monitoring 807 

Committees (DSMC’s), especially when the trial is complex. A review of the interim results 808 

from selected trial simulations can also provide good examples to the DSMC on what may 809 

happen during the trial. 810 

In this tutorial, we illustrated the simulation process and code using the PIMS trial, however, 811 

these building blocks can be adapted and expanded for other studies. We have included R 812 

code within the manuscript and equivalent Stata code can be found in the supplementary 813 

material. In practice, designing an adaptive trial is often more complicated than the example 814 
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presented here, and the features of the design will need to be incorporated into the simulation 815 

code.  816 

6. Conclusion 817 

Trial simulation is typically required for resource planning for adaptive designs, which must 818 

be tailored to the research questions, features and requirements of the trial at hand. This 819 

tutorial will provide researchers with a starting point for how to conduct these simulations, 820 

which is accessible to statisticians and clinical trialists and that can be tailored to suit their 821 

trial needs. 822 
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Figures 979 

Figure 1. PIMS trial overview.  980 

Figure 2. Simulation workflow and the modular structure of simulation building blocks.  981 

  982 
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Tables 983 

Table 1. The output from a single simulated trial dataset.   984 

Variable Description of the variable Output 

nevents0 Number of events in the control group 17 

nevents1 Number of events in the treatment group 9 

pevents0 Proportion of events in the control group 0.06 

pevents1 Proportion of events in the treatment group 0.03 

sample_size Sample size 584 

interim_time Time at the interim (days) 433 

interim_or Odds ratio at the interim 0.81 

interim_lci Lower CI for OR at interim 0.32 

interim_uci Upper CI for OR at interim 2.01 

interim_p P-value for any difference between treatments at the interim analysis 0.66 

interim_stop Whether the trial would have stopped at the interim (based on decision criteria at interim) 0.00 

final_or Odds ratio at final analysis 0.51 

final_lci Lower CI for odds ratio 0.22 

final_uci Upper CI for odds ratio 1.15 

final_p P-value for treatment difference at final analysis 0.11 

final_stop Whether the trial is conclusive at final analysis 0.00 

stop Whether the trial was conclusive (at the interim or at the final analysis) 0.00 

flipflop The probability of trial flip-flopping 0.00 

Note: The control group (Na77); the treatment group (Na140). 985 
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Table 2. A summary of the output from 5,000 simulated trial datasets for the expected treatment effect in PIMS (p0 = 0.10 for control arm 987 

(Na77), p1 = 0.04 for treatment arm (Na140)).  988 

Variable Description of the variable Minimum Q1 Median Mean Q3 Maximum 

nevents0 Number of events in the control group 14 23 28 27 31 49 

nevents1 Number of events in the treatment group 1 9 11 11 14 24 

pevents0 Proportion of events in the control group 0.05 0.09 0.10 0.10 0.11 0.27 

pevents1 Proportion of events in the treatment group 0.01 0.03 0.04 0.04 0.05 0.08 

sample_size Sample size 129 584 584 545 584 584 

interim_time Time at the interim (days) 116 240 281 284 324 548 

interim_or Odds ratio at the interim 0.04 0.23 0.40 0.41 0.52 1.95 

interim_lci Lower CI for OR at interim 0.00 0.07 0.14 0.14 0.19 0.78 

interim_uci Upper CI for OR at interim 0.21 0.65 1.03 1.06 1.30 5.31 

interim_p P-value for any difference between treatments 

at the interim analysis 

0.00 0.01 0.07 0.14 0.17 1.00 

interim_stop Whether the trial would have stopped at the 

interim (based on decision criteria at interim) 

0.00 0.00 0.00 0.13 0.00 1.00 

final_or Odds ratio at final analysis 0.06 0.29 0.37 0.39 0.48 1.24 

final_lci Lower CI for odds ratio 0.01 0.13 0.18 0.19 0.24 0.65 

final_uci Upper CI for odds ratio 0.19 0.58 0.74 0.77 0.91 2.41 

final_p P-value for treatment difference at final 

analysis 

0.00 0.00 0.01 0.04 0.03 1.00 

final_stop Whether the trial is conclusive at final analysis 0.00 1.00 1.00 0.80 1.00 1.00 

stop Whether the trial was conclusive (at the interim 

or at the final analysis) 

0.00 1.00 1.00 0.80 1.00 1.00 

flipflop The probability of trial flip-flopping 0.000 0.000 0.000 0.001 0.000 1.000 
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Note: Q1: 1st quartile; Q3: 3rd quartile. In bold are the quantities discussed in the manuscript. Namely, the average sample size, probability of trial stopping early (at 989 

interim), average of final odds ratio and confidence interval [CI] (lower CI boundary [LCI], upper CI boundary [UCI]), p-value, probability of trial success, probability of 990 

trial flipflopping (rounded to 3 decimal places due to small magnitude).  991 
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Table 3. Event probabilities across treatment arms for the 4 scenarios considered in the PIMS simulations. 992 

 993 

  994 

Scenario Control (Na77) Intervention (Na140) 

Null 0.10 0.10 

As powered 0.10 0.04 

Smaller 

difference 

0.10 0.06 

Larger 

difference 

0.10 0.03 
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Table 4. A summary of the output from 5,000 simulated trial datasets under the ‘null hypothesis’ scenario for the PIMS simulations 995 

Variable Description of the variable Minimum Q1 Median Mean Q3 Maximum 

nevents0 Number of events in the control group 2 26 29 29 33 49 

nevents1 Number of events in the treatment group 2 26 29 29 33 47 

pevents0 Proportion of events in the control group 0.03 0.09 0.10 0.10 0.11 0.23 

pevents1 Proportion of events in the treatment group 0.02 0.09 0.10 0.10 0.11 0.25 

sample_size Sample size 141 584 584 583 584 584 

interim_time Time at the interim (days) 80 169 197 199 227 378 

interim_or Odds ratio at the interim 0.10 0.78 1.00 1.12 1.26 11.55 

interim_lci Lower CI for OR at interim 0.02 0.30 0.39 0.43 0.50 3.15 

interim_uci Upper CI for OR at interim 0.34 2.00 2.55 2.99 3.31 74.69 

interim_p P-value for any difference between treatments at the interim 

analysis 

0.00 0.33 0.62 0.52 0.66 1.00 

interim_stop Whether the trial would have stopped at the interim (based on 

decision criteria at interim) 

0.00 0.00 0.00 0.00 0.00 1.00 

final_or Odds ratio at final analysis 0.36 0.83 1.00 1.04 1.21 2.74 

final_lci Lower CI for odds ratio 0.19 0.48 0.58 0.60 0.70 1.52 

final_uci Upper CI for odds ratio 0.66 1.43 1.73 1.81 2.10 5.15 

final_p P-value for treatment difference at final analysis 0.00 0.25 0.49 0.50 0.77 1.00 

final_stop Whether the trial is conclusive at final analysis 0.00 0.00 0.00 0.04 0.00 1.00 

stop Whether the trial was conclusive (at the interim or at the final 

analysis) 

0.000 0.000 0.000 0.043 0.000 1.000 

flipflop The probability of trial flip-flopping 0.000 0.000 0.000 0.001 0.000 1.000 
Note: Q1: 1st quartile; Q3: 3rd quartile. In bold is the proportion of trials that conclude as a success when there is no treatment effect (i.e. type I error)996 
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