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Abstract 

Background  The demand for adaptive trial designs is growing because of their flexibility and the potential 
for efficiency gains over traditional fixed designs. Adaptive trials allow planned modifications to the design based 
on accumulating data. Simulation is imperative in designing adaptive trials because analytical power formulae 
cannot account for data-driven adaptations. Despite their popularity, the uptake of adaptive trials has been slowed 
by the lack of expertise and availability of training resources.

Methods  In this tutorial, we demonstrate how to simulate data from a simple adaptive trial with a single interim 
analysis, summarise the simulations, and use these results to balance the type I error and power to inform the study 
design and to determine the expected sample size. The simulation code, based on a real trial in hyponatraemia in chil-
dren, is provided in both R and Stata programming languages. The code is written in modules to improve compre-
hensibility and enable simple changes to generate a range of adaptive designs.

Discussion  When using simulation to design an adaptive trial, the simulations must be tailored to the unique design 
requirements of the trial at hand. This tutorial provides a foundational framework designed to make the simulation 
process more accessible to both statisticians and clinicians.
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Introduction
Adaptive trial designs are becoming increasingly impor-
tant in medical research as they allow for prospectively 
planned modifications to one or more aspects of an ongo-
ing clinical trial based on accumulating data, without sac-
rificing the trial validity and integrity [1–7]. The demand 
for these designs is growing because they are flexible and 
can provide efficiency gains over conventional designs, 
often in terms of cost or time [1, 3, 6, 8]. This flexibility 
is particularly beneficial in areas such as infectious dis-
eases like COVID-19, oncology and rare diseases, where 
patient populations are small, and treatment effects need 
to be assessed rapidly [5, 9, 10]. The most common pre-
planned modifications are changes to the sample size 
to declare treatment efficacy or futility (early stopping), 
ceasing randomisation to futile treatment arms (arm 
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dropping), and modifying the allocation probabilities 
to each treatment arm (adaptive randomisation) [5, 6]. 
These modifications can improve resource efficiency if 
fewer participants receive inferior treatment/s, or if the 
trial requires fewer participants overall when compared 
with a traditional fixed design [6]. The group sequential 
design is an example of an adaptive design that incor-
porates multiple planned interim analyses, with pre-
specified rules for early stopping [11]. A more complex 
example is the platform design, where multiple treat-
ments are evaluated simultaneously, across a number 
of participant subgroups, under a single core protocol 
[12–15]. Platform designs may have the benefit of using 
the same control group across multiple research ques-
tions and the ability to add new interventions as funds or 
supplies become available, but require careful planning 
around adaptation criteria and analysis, and more com-
plex statistical modelling to account for non-concurrent 
controls [16, 17].

Despite their advantages and popularity, the uptake of 
adaptive designs has been slow amongst clinical trial-
ists. This may be due to the practical challenges in their 
design and implementation, poor access to design exper-
tise, reservations about acceptance by regulatory authori-
ties, stakeholders and funders, and the complexity of 
interpreting the results [2, 5, 6].

Adaptive designs can use either frequentist or Bayesian 
methods for design, inference, and decision making (or a 
combination thereof ) [6, 11, 18]. In a frequentist design, 
the decision to stop the trial early for efficacy or futility is 
typically made by comparing the p-value for a treatment 
effect, calculated within a hypothesis testing framework, 
against pre-defined stopping boundaries [18]. For exam-
ple, with a frequentist design the trial could be stopped 
for efficacy if the treatment effect p-value at an interim 
analysis is less than 0.005, a pre-defined threshold cho-
sen to control the false positive rate (α, the probability of 
rejecting the null hypothesis when there is truly no differ-
ence between the treatment arms) [18–21]. In a Bayesian 
design, these decisions are typically guided by the pos-
terior probability of clinically relevant treatment effects, 
e.g., for superiority this may be the probability that the 
relative risk is less than one [18]. For example, the trial 
could be stopped for efficacy if the posterior probabil-
ity of treatment being superior to the control is greater 
than 0.95, where the pre-defined threshold is usually 
chosen to control the frequentist false positive rate [22]. 
Although type I error control is not formally required 
in a Bayesian design, it is common to report frequentist 
operating characteristics in these designs, particularly if 
the trial aims to satisfy regulatory requirements [6, 18, 
23–27]. Therefore, most Bayesian adaptive designs are a 
hybrid of frequentist and Bayesian methods as they are 

designed based on frequentist operating characteristics 
such as power and type I error, but the interim analyses 
and adaptation criteria are based on Bayesian inference 
and decision rules [6, 28–31].

For simple adaptive designs, such as group sequential 
designs, established frequentist formulae can be used to 
determine the operating characteristics, such as power 
and type I error or the required sample size. However, 
many adaptive trials require computer simulation to 
estimate the operating characteristics and identify an 
efficient trial design. The operating characteristics will 
depend on the clinical phase of the trial and the degree of 
risk acceptable to the investigator, sponsor, and/or regu-
lator, in addition to implementation feasibility [6, 32–35]. 
Simulation studies are widely used in statistics to evaluate 
and understand the performance of statistical methods 
[36, 37]. More recently, simulation has become pivotal in 
the design of innovative clinical trials [7, 38–40]. Simu-
lation involves generating virtual (i.e., computer gener-
ated and hypothetical) trial data under different assumed 
clinical effects for the treatment and control arms, often 
referred to as scenarios [32]. Data for thousands of ‘vir-
tual trials’ are generated and analysed and operating 
characteristics such as the power, type I error and sample 
size are summarised for each scenario. These scenarios 
can incorporate various design features such as the tim-
ing and number of interim analyses, the decision rules for 
trial adaptations, and the number of treatment arms. Set-
ting these design features usually happens via an iterative 
process, where results from a growing number of scenar-
ios are discussed amongst the statisticians and clinicians 
and the design features are updated for the next batch of 
simulations; a cycle that continues until acceptable oper-
ating characteristics are achieved. This iterative process 
facilitates the communication of important trial deci-
sions, which in turn builds confidence in the design and 
analysis prior to recruiting the first participant [33, 35].

A range of software exists for conducting simulations 
for adaptive trials including stand-alone software (e.g., 
FACTS [41], ADDPLAN [42] and EAST [43]), packages 
within existing software such as R [44] (e.g., gsDesign 
[45], bayesCT [46], MAMS [47], asd [48], rpact [49]) and 
Stata [50] (e.g., nstage [51]), online trial simulators (e.g. 
HECT [52]) and custom written code that is sometimes 
available from the addendums to publications [34, 35, 
53–55]. However, some software are limited in the avail-
ability of design options, while others may overwhelm 
the users with their availability of a wide range of design 
features [34]. Owing to the limited capabilities or flexibil-
ity and the complexity of the available software, experi-
enced programmers often find it more efficient to write 
their own code [34]. This also offers the flexibility to deal 
with the unique nature of the wide variety of adaptive 
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designs that may be used. However, there is currently a 
lack of guidance on developing code for conducting sim-
ulations, and on the general process for how these simu-
lations are used to guide the trial design, although this 
approach may be unfamiliar to most clinicians and trial 
methodologists.

The aim of this tutorial is to provide a step-by-step 
guide on how to write code to simulate trial data and 
how to interpret the output for a range of scenarios to 
inform the design of a simple adaptive trial with a single 
interim analysis. This process will be useful to both stat-
isticians and clinical trialists wishing to implement adap-
tive designs. We provide the simulation code in both R 
(within the main text) and Stata (in the supplementary 
material) using a modular coding structure to enhance 
comprehensibility and facilitate modifications to a range 
of adaptive designs. The provided code can serve as a 
foundation for generating simulations for any trial. How-
ever, it will need to be adapted to the specific design fea-
tures of the trial—for example, by modifying parameters 
such as recruitment rate, allocation ratios, and stopping 
rule. We focus our attention on a frequentist example, 
but the code could be adapted to incorporate Bayesian 
decision making. We illustrate the simulation and design 
process using a real-world example of the Paediatric 
Intravenous Maintenance Solution in reducing the risk of 
hyponatraemia in children in hospital (PIMS) trial, pub-
lished previously [56]. Although there were no adaptive 
elements in the original trial, we assume in this tutorial 
that the trial included a single interim analysis to illus-
trate the simulation and design processes.

We begin by providing details of the PIMS trial in sec-
tion. “Illustrative example: the PIMS trial”. In section “The 
simulation process”, we outline the simulation process 
and explain the code required to generate the simula-
tions. We use a modular structure and introduce subrou-
tines or functions for generating the different aspects of 
the trial data, which we call ‘building blocks’. The building 
blocks are combined to produce a trial simulation that 
is run many times under a number of clinically relevant 
scenarios. In the section “Simulation outputs”, we discuss 
the outputs of the simulation and how these should be 
summarised and interpreted. We conclude with a discus-
sion on balancing the design options against the inves-
tigator/sponsor/regulator risk strategies in the Section 
‘Discussion’.

Illustrative example: the PIMS trial
Overview of the PIMS trial
The PIMS trial was a two-arm, parallel-group, ran-
domised, double blind trial conducted at the Royal 
Children’s Hospital, Melbourne, Australia, to deter-
mine whether the use of a fluid solution with a higher 

sodium concentration reduced the risk of hyponatrae-
mia compared with the use of a hypotonic solution. 
Participants were children aged 3 months to 18 years 
admitted to The Royal Children’s Hospital’s emergency 
department and presurgical wards, who needed intra-
venous maintenance hydration for 6 h or longer. Six 
hundred ninety participants were randomised at a 1:1 
ratio to either isotonic intravenous fluid containing 140 
mmol/L of sodium (Na140) or hypotonic fluid contain-
ing 77 mmol/L of sodium (Na77) for 72 h or until their 
intravenous fluid rate decreased to lower than 50% of 
the standard maintenance rate (50–150% of the daily 
volume recommended by [57]). Randomisation was 
stratified by levels of baseline sodium concentrations 
(Low; < 135 mmol/L, Normal; 135–145 mmol/L and 
High; > 145 mmol/L). The primary outcome was occur-
rence of hyponatraemia (defined as serum sodium con-
centration < 135 mmol/L with a decrease of at least 3 
mmol/L from baseline) during the treatment period. 
A frequentist fixed trial design sample size was cal-
culated, assuming 10% of the participants developed 
hyponatraemia in the Na77 group by 72 h, producing 
a total sample size of n = 640 (320 per arm) to provide 
80% power with a 2-tailed 0.05 significance level to 
detect an absolute risk difference of 6% (calculated in 
nQuery [58] allowing for a continuity correction). An 
additional 25 participants were recruited in each arm to 
allow for missing data in the primary outcome, which 
was not incorporated into the original sample size cal-
culation given the short time frame for the outcome.

In the original study, there were no planned interim 
analyses. For illustrative purposes in this tutorial, we 
assume that they planned to conduct a single interim 
analysis once half of the expected outcome events have 
occurred. At the interim analysis, we plan to (conserva-
tively) declare efficacy if the p-value is less than 0.005. 
Using the traditional alpha spending framework, efficacy 
is declared at the final analysis if the p-value is less than 
or equal to 0.045. Given this simple design, the sample 
size frequentist re-calculation is n = 584 (292 per arm) 
to provide 80% power with a 2-tailed 0.045 significance 
level at the final analysis based on the Pearson chi-square 
test, to detect an absolute risk difference of 6% (equiva-
lent to an odds ratio of 0.375). Note this is different to the 
original sample size calculation that used a 2-tailed 0.05 
significance level. We use the design characteristics in 
the modified PIMS trial (with a single interim) and gen-
erate the trial data using simulation to demonstrate the 
expected power and sample size. Although simulation is 
not needed to determine the operating characteristics for 
this study design, we use it as an example so that we can 
check the results obtained from our formulaic computa-
tion above.
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Simplifying assumptions
We made the following simplifying assumptions regard-
ing the PIMS trial: 

1.	 There was no loss to follow-up.
2.	 All sites would be active simultaneously and that 

the rate of recruitment would be constant, taking 
approximately 928 days, based on the recruitment 
rate in PIMS.

3.	 The outcome was available immediately (rather than 
at 72 h).

4.	 A single interim analysis would take place once 
half of the expected cases of hyponatraemia have 
occurred (20 cases).

The key features of the (modified) PIMS study design 
are outlined in Fig. 1.

The simulation process
There are many design features to consider when plan-
ning an adaptive trial. The major considerations are the 
(fixed or varying) randomisation probabilities, the num-
ber and timing of interim analyses, and the decision 
criteria. Simulation over a range of scenarios ensures 
an efficient design is selected that answers the key 
study question(s) and balances the attitude to risk [32, 
33]. Setting these design features should be an iterative 
procedure between clinicians and statisticians. Data 
for thousands of trials are simulated for a number of 

different scenarios (reflecting pre-determined design 
characteristics that align with decision points and a range 
of clinical effect sizes and direction of effect). It is advis-
able that some of the scenarios should be more extreme 
to determine how the trial adaptations would respond to 
unanticipated intervention effects. The results from these 
simulations are aggregated and summarised to estimate 
the operating characteristics under each scenario (see 
section “Simulation outputs”) and should be discussed 
with the clinical team [32, 33, 59, 60]. Once an initial set 
of simulation results has been obtained, the design char-
acteristics may require adjustment, e.g., to increase the 
power or reduce the type I error. This process is repeated 
until an appropriate design with desired characteristics 
(such as 80% power, 5% type I error and feasible expected 
sample size meaningfully lower than the fixed design) 
has been identified. The scenarios considered should be 
discussed with the clinical experts and should contain 
a mixture of plausible and extreme scenarios reflecting 
various clinical effects, to provide a good understanding 
of how the operating characteristics change with varying 
treatment effects (for example different response/event 
rates or mean outcome in each treatment arm). This iter-
ative procedure is outlined in Fig. 2.

When programming the simulations, it is helpful to 
break each trial into manageable chunks or modules 
that represent the stages of a trial [32]. For example, 
we start by generating the randomisation list, followed 
by recruiting participants, and then we follow them up 

Fig. 1  PIMS trial overview
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and collect outcome data either at visits or at the end of 
the trial period, and then we analyse the data. We refer 
to the subroutines or functions that generate each stage 
of the trial as ‘building blocks’. This modular approach 
makes it easy to navigate through the code, enabling 
convenient troubleshooting, re-use and development. 
The code for simulation also needs to be flexible to be 
able to be updated with the changing trial design, as we 
typically want to compare multiple candidate designs 
with the aim of identifying an efficient design [32]. 
For example, a common aim of simulation is to deter-
mine the decision criteria to declare efficacy/success 
or futility/lack-of-benefit of the treatment(s) or trial at 
interim(s) and at final analysis.

In this tutorial, we generate and save the complete 
trial data up to the maximum recruitment and then 
assess the decision criteria at the interim analysis 
(using the available data) and the final analysis (using 
all of the data). The post-processing of the interim data 
means we can evaluate different decision criteria (e.g., 
success/futility thresholds) easily without generating 
the entire dataset repeatedly, provided that we have 
sufficient computational storage. The alternative is 
to assess the decision criteria once sufficient data has 
been generated for each interim and either continue or 
stop data generation depending on whether the deci-
sion threshold(s) is met. The latter approach is compu-
tationally inefficient when evaluating different decision 
criteria; however, it may still be needed to assess the 
operating characteristics of some designs such as in 
response adaptive randomisation [61]. Figure  2 shows 
a schematic of our simulation process. In the follow-
ing sections, we illustrate the simulation process in R; 

equivalent Stata code is presented in the supplementary 
material.

Building block 1: randomisation
The first step is to simulate the treatment assignment for 
the trial participants up to the maximum trial size. This 
may be via simple randomisation, blocked randomisa-
tion, stratified randomisation or more complex dynamic 
approaches such as minimisation [62–64]. We will focus 
on the most common method, block randomisation, 
which was employed in the PIMS trial.

Let n be the maximum sample size of a simulated 
trial, which is typically the sample size for which the 
study is powered to identify a clinically meaningful 
effect size (n = 584 in PIMS trial; see section “Illustra-
tive example: the PIMS trial”) at the final analysis but 
is more commonly the feasible recruitment target over 
the trial recruitment period. The ‘simRandomisation’ 
function below generates the treatment arm alloca-
tion for “ each participant in the trial. In the PIMS trial, 
the participants are randomised using a 1:1 allocation 
ratio with block randomisation using block sizes of 4. 
To reflect this, we first generate blocks of size 4 (block: 
1 to 4) and then a treatment indicator (trt: coded as 0 
for control, i.e. Na77 group, and 1 for the Na140 group) 
such that two participants are allocated to each treat-
ment arm within each block. Next, a vector of random 
numbers is generated from a uniform distribution 
between 0 and 1, and the observations are ordered by 
these random numbers within each block. This deter-
mines the order of treatment assignments within the 
block and results in a sequential list of treatment allo-
cations for consecutively recruited participants in the 

Fig. 2  Simulation workflow and the modular structure of simulation building blocks
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trial. The input for this function is the trial maximum 
sample size (n). For simplicity, the allocation ratio of 1:1 
and block size of 4 have been coded within the func-
tion. Alternatively, one could extend the function to 
allow the block size and the allocation probabilities to 
vary by including these as input variables. The output 
from this function is an R dataframe (dataset) with par-
ticipant ID (1:n) and the treatment allocation (0 or 1) 
for each of the n participants.

Building block 2: simulate trial recruitment
The second step is to simulate each participant’s time 
of recruitment. Generating the participant accrual 
times should be based on a plausible recruitment rate 
(in days, weeks or months) across the sites. One option 
is to assume that participant accrual occurs at a con-
stant rate over time from study commencement. More 
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realistically, sites commence at different times and 
recruitment may ramp-up until it reaches a constant 
rate at which it remains until recruitment is complete. 
Some trials may also experience a ramp-down phase as 
the trial nears the end of recruitment. When simulat-
ing participant accrual, it is important to build in some 
variability to the recruitment process as this may affect 
the operating characteristics.

Participant accrual times can be generated using the 
function ‘simAccrual’. In the code below, we assume 
that participant accrual is constant over time and would 
take 928 days. The code generates n (the maximum 
sample size) random numbers from a uniform distribu-
tion between 0 and 1 and multiplies each by the length 
of the recruitment period (e.g., recruit_period: 928 days 
in the PIMS trial). The inputs to this function are the 
trial maximum sample size (n) and the length of the 
recruitment period (recruit_period); the output is a vec-
tor of the ordered accrual times for the n participants 
(accrual_time).

Building block 3: generate participant outcomes
The third step is to simulate the participant outcomes 
under a specific scenario. Participant outcomes should 
be generated from the relevant probability distribu-
tions based on the outcome variable. For example, if 
the outcome is a binary variable (i.e., coded as 0 or 1), 
data can be simulated from a binomial distribution; if 
the outcome is a continuous variable, data can be simu-
lated from a normal distribution; and if the outcome is a 

time-to-event variable, then data can be simulated from 
either the exponential or Weibull distribution.

In this tutorial, data are simulated using the ‘simTri-
alData’ function below, which has nested calls to the 
first two building blocks (‘simRandomisation’ and ‘sim-
Accrual’). In the PIMS trial, the outcome (hyponatrae-
mia by 72 h) is binary, and we assume that it is available 
for all participants immediately, hence we simulated 
it using a binomial distribution, with different event 
probabilities depending on whether the participant is 
allocated to the Na77 or Na140 arm (as defined in the 
scenarios). We define p as the vector of event prob-
abilities for the two arms. Notice that the treatment 
allocation (trt) is coded as 0 for control (Na77) and 1 
for treatment (Na140), therefore, when the outcome is 
generated, the rbinom function selects, the probability 
in vector position 0 + 1 = 1 for control and vector posi-

tion 1 + 1 = 2 for treatment from vector p. The input to 
the ‘simTrialData’ function is the maximum sample 
size (n), the length of the recruitment period (recruit_
period) and the vector of event probabilities (p), which 
will depend on the scenario under consideration. The 
output is a dataset for a single trial with n rows (one 
for each participant) and 4 columns representing par-
ticipant ID (obs_no), randomised treatment allocation 
(trt), accrual time (accrual_time) and outcome (event).
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Building block 4: identify the data available at the interim 
analysis
For trials that include pre-planned interim analy-
ses, a fourth step is needed to identify and extract the 
data available at the time of each interim analysis. This 
requires identifying participants with outcomes available 
at the time of the interim analysis, based on their recruit-
ment time and time to outcome, and extracting these 
data. When planning if and when to conduct an interim 
analysis, it is important to consider the time frame of the 
outcome relative to the recruitment period. For example, 
some, but not all, outcome data must be available prior 
to the first interim analysis. In addition, the maximum 
recruitment target should not be met prior to the sched-
uled interim analyses. Trials with a short recruitment 
period (e.g., weeks) relative to the time to outcome (e.g., 
years) are generally unsuitable for interim analyses.

The data available for an interim analysis can be identi-
fied using the function ‘simInterimData’. In the code, we 
assume that the outcome is available immediately after 

recruitment and the time of the interim analysis is when 
a pre-determined number of events (cases of hyponatrae-
mia; events_at_interim = 20 events) have occurred. Since 
the data are ordered by participant recruitment times 
(see section ‘Building block 2: simulate trial recruit-
ment’), we can compute the cumulative number of events 
(cum_events) using a running total of the column con-
taining the outcome data and the participant ID (obs_no) 
at which 20 events are accumulated (i.e., when cum_
events = 20) indicates the planned time of our interim 
analysis (interim_ind). In this example, as there is no time 
lag between recruitment and outcome assessment, the 
outcomes at the interim (event_interim: 0 or 1) would be 
the same as the outcomes at the final timepoint (event) 
for participants included in the interim analysis (i.e., for 
observations where obs_no < = interim_ind).

The input to this function is the simulated trial data-
set (data) and the number of events triggering the 
interim analysis (events_at_interim) and the output is 
the trial dataset with additional columns for the data 



Page 9 of 20Jayawardana et al. Trials          (2025) 26:400 	

included in the interim analysis (includes cum_events, 
interim_ind, event_interim). Note that the event_
interim variable has missing values for all the par-
ticipants recruited after the interim timepoint. These 
participants will be excluded from the interim analysis 
(see section ‘Building block 5: analyse the trial data’). 
Alternatively, the user may choose to only extract the 
data up to the interim timepoint and output it as a sep-
arate truncated dataset (data_interim; shown within 
the comments of code below) and then use this data-
set as an input to the interim analysis function (section 
‘Building block 5: analyse the trial data’). The ‘simInter-
imData’ function can be modified to reflect multiple 
interims performed when a fixed number of new par-
ticipants have accrued (e.g., every 20) and to allow a 
lag time between recruitment and outcome assessment 
(e.g., outcome at 2 weeks).

Building block 5: analyse the trial data
The fifth and final step is to conduct the analysis of the 
trial data. This function is generic and can be used for 
the analysis at an interim and at the end of the study. 
Generally, only the primary outcome is analysed to 
compare the treatments against the control, based on 
participants with available data up to that timepoint. 
The test statistics are evaluated against decision crite-
ria to determine which treatment arms will continue 
to have new participants assigned to them, which 
treatment arms will have no further new assignments 
(i.e., arm dropped at interim), and whether the trial 
has reached a conclusion that triggers the final analy-
sis (which would include the analysis of all secondary 
endpoints). In the modified PIMS trial, whether or not 
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a simulated trial would have stopped recruitment (due 
to superiority of the treatment arm over control) at an 
interim analysis is assessed by comparing the test sta-
tistics against the pre-defined stopping boundaries, 
i.e., evaluating whether the interim p-value is less than 
0.005. Some quantities that can be useful to output 
from the analysis are:

1.	 Whether the trial would have stopped before maxi-
mum recruitment at each interim analysis

2.	 Point estimate and confidence interval for the treat-
ment effect (for example, odds ratio or relative risk) 
at the final analysis (which may be at the interim 
timepoint if the study was stopped early).

3.	 The sample size at the time the trial was stopped 
(including when maximum recruitment was 
reached).

4.	 Whether the study would have found evidence of 
clinically relevant treatment effects or if the trial was 
inconclusive.

The function ‘analyseData’ can be used to analyse 
the data for each trial at each scheduled analysis and 
evaluate decision criteria for adaptations. It calculates 
the test statistic using a statistical model (in the PIMS 
trial, it is a logistic regression model) for the statistical 
hypothesis being explored, e.g., whether treatment is 
superior to control. It then compares the test statistics 
against the pre-defined decision threshold and deter-
mines whether the criterion for stopping recruitment 
at the interim timepoint has been met, in addition to 
whether the trial conclusion is reached before maxi-
mum recruitment. The results from each analysis, such 
as the estimate of the effect size and associated confi-
dence interval and whether decision thresholds are met 
at interim(s) and final analysis, are saved as the output.

Specifically, the following steps are carried out in the 
‘analyseData’ function:

1.	 Compute the proportion of participants with an 
event in the control (pevents0) and treatment 
(pevents1) arms at maximum recruitment (end of the 
trial) or at the interim if the trial stopped early.

2.	 Conduct a logistic regression to compare outcomes 
between the treatment and control arms at the 
interim analysis.

3.	 Assess the decision criteria at the interim time point, 
i.e., is the p-value for the log odds ratio for treatment 
compared to control (interim_p) less than the deci-
sion threshold at the interim (alpha_interim). If true, 
then stop recruitment to the trial at the interim and 
declare efficacy/success (i.e., interim_stop = 1), other-
wise continue recruitment.

4.	 Conduct a logistic regression to compare outcomes 
between the treatment and control arms at the final 
analysis.

5.	 Assess the decision criteria at the final analysis and 
declare efficacy/success if the p-value for the log odds 
ratio for treatment compared to control (final_p) is 
less than the decision threshold at the final analysis 
(alpha_final), otherwise declare futility.

6.	 Record the trial conclusion in the variable final_stop, 
where final_stop = 1 if the treatment was determined 
to be efficacious compared to control, or final_
stop = 0 otherwise.

The inputs to this function are the simulated data-
set from ‘siminterimData’ (data) and the decision 
thresholds at each time point (alpha_interim and 
alpha_final). The decision thresholds are usually cho-
sen by simulation to control the false-positive error and 
should be pre-specified in the trial protocol. Users may 
be interested in exploring different thresholds as part 
of the simulation exercise. The output is a summary of 
the results from the interim and final analyses (results), 
including the number and proportion of events in each 
treatment arm (nevents0, nevents1, pevents0, pevents1), 
the sample size (sample_size: which is either the num-
ber of participants recruited at the interim if the trial 
stopped early or the maximum sample size n, other-
wise), the time of the interim (interim_time), the effect 
sizes (odds ratios) and confidence intervals at the 
interim and at the final analysis (interim_or, interim_lci, 
interim_uci, final_or, final_lci, final_uci), the p-values 
at the interim and final analysis (interim_p, final_p), 
whether the trial reached an efficacy conclusion at the 
interim and final time points (interim_stop, final_stop), 
whether the trial was conclusive (stop: 1, if trial met the 
decision threshold at the interim or final analysis, or 
0, otherwise) and the probability of trial flip-flopping 
(flipflop: 1, if the trial met the decision threshold at the 
interim but not at the final analysis, or 0, otherwise).
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Simulating a single trial
The building blocks above (functions in sections ‘Build-
ing block 3: generate participant outcomes’, ‘Building 
block 4: identify the data available at the interim analy-
sis’, to ‘Building block 5: analyse the trial data’) can be 
put together to conduct the simulations for a single 
trial. We begin by simulating a single trial which assists 
in debugging the code and identifying whether all rel-
evant results have been captured. We define a number 
of global parameters (which represent the simulation 
inputs) described below, and then sequentially run each 
step using the ‘runTrial’ function.

Inputs
In order to simulate trial data, we must specify a num-
ber of global parameters to use in our simulation. 
Below we outline the global parameters we use for the 
PIMS trial:

1.	 The random seed to ensure reproducibility of the 
data and outputs.

2.	 The recruitment period, which for the PIMS trial we 
assumed to be 928 days.

3.	 The maximum trial sample size (n =  584 for PIMS 
trial).

4.	 The number of events required to trigger an interim 
analysis (20 cases of hyponatraemia in PIMS trial).

5.	 The proportion with the event in the treatment and 
control arms. This is expressed as a vector, where the 
values depend on the scenario for which data is being 
generated. Initially we set these as p0 = 0.10 and p1 = 
0.04 which we denote as the ‘as powered’ scenario.

6.	 The decision thresholds, which were set to match the 
fixed-design sample size calculation, i.e., 0.005 at the 
interim and 0.045 at the final analysis (alpha_interim 
= 0.005, alpha_final = 0.045).

It is useful to define the input parameters in one place 
so that this list can be easily accessed for reference at 
any time and can be updated to explore alternative 
designs or scenarios. In the PIMS example, we use the 
following code to detail the inputs.
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The function ‘runTrial’ below uses the previously 
defined building blocks to simulate data for a single 
trial:

1.	 Building block 3: ‘simTrialData’ simulates the trial 
data (calls ‘simRandomisation’ and ‘simAccrual’)

2.	 Building block 4: ‘simInterimData’ identifies the data 
for the interim analysis

3.	 Building block 5: ‘analyseData’ analyses the trial data

The inputs are the maximum sample size (n), the recruit-
ment period (recruit_period), the vector of event propor-
tions in the treatment arms (p), the number of events to 
trigger the interim (events_at_interim) and the decision 
thresholds at the interim(s) and final analysis (alpha_
interim and alpha_final, respectively). The output is a list 
containing the simulated dataset (data) and the results 
from the analyses of interim and final data (results).

This function can be executed to generate the trial 
data for a single trial using the following code:

The output generated from this function is illustrated 
in Table  1. The output includes the simulated dataset, 
the results from the analyses and the evaluation of the 
decision criteria. The results (contained within results_
single_trial$results) includes the variables described in 
section ‘Building block 5: analyse the trial data’ (output 
from the function ‘analyseData’).

Simulating multiple trials
The ‘runTrial’ function simulates data for a single trial. How-
ever, a single trial is not representative of what to expect for 

a particular scenario, i.e., some simulated trials will have 
more extreme intervention effects than others. It is there-
fore important to simulate many trials for each scenario of 
interest to understand how our trial design could plausibly 
perform accounting for the variability in the trial. To do this, 
we create a function, ‘runMultipleTrials’, that repeatedly exe-
cutes the ‘runTrial’ function and saves the summary for each 
trial. Note that we can save all the simulated trials/datasets 
(using ‘saveRDS’ in the function below). This may take up a 
considerable amount of space depending on the number of 
simulations; however, it can be useful if additional summary 
measures may be required in the future.

The inputs required for the ‘runMultipleTrials’ func-
tion (in addition to the global parameters) are the ran-
dom seed (seed) and the number of trial data sets to be 
simulated (simno). Note that setting the seed once before 
running any of these functions will make the results 
reproducible. However, in this implementation we have 
used seed within the function to make it explicit and part 
of the function, so that the code can be executed in iso-
lation. The output of this function is a list containing a 
data frame of the results as returned by the ‘analyseData’ 
function for each of the trial datasets simulated (results_
all), a data frame with the statistical summaries of the 
results across all of the simulated trials (results_sum-
mary) and the seeds used for reproducibility (seeds).
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For the PIMS trial, we generated 5000 simulated data-
sets (simno = 5000) for each scenario, which is appropri-
ate for the expected accuracy of the summary measures 
across simulations (larger numbers tend to give more 
accurate estimates) given the computational burden. 
Simulation of more complex trials may need larger num-
bers. Practically, it can be useful to start with a much 
smaller number of simulations (e.g., simno = 10 or 100) to 
ensure that the function is working as expected, before 
increasing to a larger number to compare the choice of 
design parameters. The ‘runMultipleTrials’ function can 
be executed using the code below.

The summary output from this function is presented 
in Table  2 for the ‘as powered’ scenario. It includes the 

statistical summaries (minimum, 1st quartile, median, 
mean, 3rd quartile and maximum) of all of the output 
variables in the ‘results’ dataset from the ‘analyseData’ 
function (see section ‘Building block 5: analyse the trial 
data’) across the 5000 simulated trials (e.g., mean sample 
size for the 5000 simulated trials).

Simulation outputs
Scenarios
As discussed previously, trial simulation involves evalu-
ating the trial operating characteristics for a range of 
different scenarios [59]. Most of these scenarios should 
be based on plausible quantities for effect sizes between 
treatment arms according to expert opinion and pilot 
studies. However, it is important to consider some 
extreme scenarios to develop a good understanding of 
how the trial might perform if these extreme scenar-
ios arise in practice, such as if effect sizes were much 
larger or much smaller than current evidence. For the 
PIMS trial, the scenarios that could be considered are 
outlined in Table  3. The ‘null’ scenario represents the 
scenario where there is no difference in the primary 
outcome between Na140 and the Na77 groups, and the 
‘as powered’ scenario represents the scenario used in 
the original fixed-design sample size calculation. We 
have also considered two ‘extreme’ scenarios where the 
treatment effect is smaller and larger than the expected 
effect.

To evaluate the trial operating characteristics for 
each of the scenarios we use the function ‘runMulti-
pleTrials’ changing the input parameters regarding the 
primary outcome. We demonstrated the ‘as powered’ 
in Section "Simulating multiple trials" above (p0 = 0.10 
for control arm, p1 = 0.04 for treatment arm). In Table 4 

and Supplementary Tables 1 and 2 we present the sum-
mary of the results across 5000 simulated trials for ‘the 

Table 1  The output from a single simulated trial dataset

The control group (Na77); the treatment group (Na140)

Variable Description of the variable Output

nevents0 Number of events in the control group 17

nevents1 Number of events in the treatment group 9

pevents0 Proportion of events in the control group 0.06

pevents1 Proportion of events in the treatment group 0.03

sample_size Sample size 584

interim_time Time at the interim (days) 433

interim_or Odds ratio at the interim 0.81

interim_lci Lower CI for OR at interim 0.32

interim_uci Upper CI for OR at interim 2.01

interim_p P-value for any difference between treatments 
at the interim analysis

0.66

interim_stop Whether the trial would have stopped at the interim 
(based on decision criteria at interim)

0.00

final_or Odds ratio at final analysis 0.51

final_lci Lower CI for odds ratio 0.22

final_uci Upper CI for odds ratio 1.15

final_p P-value for treatment difference at final analysis 0.11

final_stop Whether the trial is conclusive at final analysis 0.00

stop Whether the trial was conclusive (at the interim or at the 
final analysis)

0.00

flipflop The probability of trial flip-flopping 0.00
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null hypothesis’ scenario, ‘smaller difference’ scenario 
and ‘larger difference’ scenario respectively.

Interpreting the output
Once we have run many simulations per scenario, we 
use the summary measures from these scenarios to tell 
us about the operating characteristics of the design as 
described below. Example code to obtain the operating 
characteristics is given in the Supplementary material.

Operating characteristics of interest
Probability of  trial success when there is no treatment 
difference (type I error)  One of the key operating 

characteristics is the type I error. The type I error is the 
probability of rejecting the null hypothesis (i.e., declar-
ing a trial success or identifying a treatment effect) when 
there is no treatment effect. We often aim to control the 
type I error to be below 5%. From our simulation out-
puts, the type I error is estimated by the proportion of 
trials that conclude as a success (i.e. declared a differ-
ence between treatment arms) in the ‘null hypothesis’ 
scenario, where there truly was no difference between 
the treatment and control arms [11]. The mean value of 
the stop variable (whether the trial was conclusive at the 
interim or final analysis) across all simulated datasets 
under the ‘null hypothesis’ scenario provides an estimate 
for the type I error.

Probability of  trial success when the intervention is truly 
superior (power)  Another important operating charac-
teristic to consider is the power of the trial. The power 
of the trial to detect a treatment effect is reflected in the 
proportion of successful trials (i.e. those that declare a 
difference between treatment arms) where there truly is 
a difference between the intervention arms. For example, 
the power of the trial to detect the treatment effect in the 
original sample size calculation of the PIMS trial can be 
estimated using the mean value of the stop variable in 
the ‘as powered’ scenario. That is, the proportion of trials 

Table 2  A summary of the output from 5,000 simulated trial datasets for the expected treatment effect in PIMS (p0 = 0.10 for control 
arm (Na77), p1 = 0.04 for treatment arm (Na140))

Q1: 1st quartile; Q3: 3rd quartile. In bold are the quantities discussed in the manuscript. Namely, the average sample size, probability of trial stopping early (at interim), 
average of final odds ratio and confidence interval [CI] (lower CI boundary [LCI], upper CI boundary [UCI]), p-value, probability of trial success, probability of trial 
flipflopping (rounded to 3 decimal places due to small magnitude)

Variable Description of the variable Minimum Q1 Median Mean Q3 Maximum

nevents0 Number of events in the control group 14 23 28 27 31 49

nevents1 Number of events in the treatment group 1 9 11 11 14 24

pevents0 Proportion of events in the control group 0.05 0.09 0.10 0.10 0.11 0.27

pevents1 Proportion of events in the treatment group 0.01 0.03 0.04 0.04 0.05 0.08

sample_size Sample size 129 584 584 545 584 584

interim_time Time at the interim (days) 116 240 281 284 324 548

interim_or Odds ratio at the interim 0.04 0.23 0.40 0.41 0.52 1.95

interim_lci Lower CI for OR at interim 0.00 0.07 0.14 0.14 0.19 0.78

interim_uci Upper CI for OR at interim 0.21 0.65 1.03 1.06 1.30 5.31

interim_p P-value for any difference between treatments at the interim analysis 0.00 0.01 0.07 0.14 0.17 1.00

interim_stop Whether the trial would have stopped at the interim (based on deci-
sion criteria at interim)

0.00 0.00 0.00 0.13 0.00 1.00

final_or Odds ratio at final analysis 0.06 0.29 0.37 0.39 0.48 1.24

final_lci Lower CI for odds ratio 0.01 0.13 0.18 0.19 0.24 0.65

final_uci Upper CI for odds ratio 0.19 0.58 0.74 0.77 0.91 2.41

final_p P-value for treatment difference at final analysis 0.00 0.00 0.01 0.04 0.03 1.00

final_stop Whether the trial is conclusive at final analysis 0.00 1.00 1.00 0.80 1.00 1.00

stop Whether the trial was conclusive (at the interim or at the final analysis) 0.00 1.00 1.00 0.80 1.00 1.00

flipflop The probability of trial flip-flopping 0.000 0.000 0.000 0.001 0.000 1.000

Table 3  Event probabilities across treatment arms for the 4 
scenarios considered in the PIMS simulations

Scenario Control (Na77) Intervention 
(Na140)

Null 0.10 0.10

As powered 0.10 0.04

Smaller difference 0.10 0.06

Larger difference 0.10 0.03
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that conclude the treatment arm is superior to the con-
trol arm at the interim or final analysis in the ‘as powered’ 
scenario.

Probability of stopping at the interim analysis  The prob-
ability of the trial stopping at the interim analysis due to 
reaching a decision threshold is another operating char-
acteristic of interest. This is calculated from the mean 
value of interim_stop variable across simulated trials for 
a given scenario.
Mean number of participants per trial  The mean sam-
ple size (sample_size) can be used to assess average 
reduction in trial size due to the inclusion of interim 
analyses. This gives an indication of the usefulness of 
the interim analysis(es), if we can save both time and 
resources without recruiting further participants or col-
lecting further follow-up data.

Probability of the trial ‘flip‑flopping’  The probability of 
a ‘flip-flop’ is another characteristic that may be of inter-
est to explore in the simulation output. This occurs when 
a given simulated trial is flagged as reaching a decision 
threshold at an interim analysis, but the critical value for 
declaring a difference at the final analysis is not met. This 
is also known as the ‘false stopping probability’, where we 
would stop the trial at the interim analysis for success or 
futility (interim_stop = 1); however, if we had continued 
the trial until final analysis this decision threshold would 
not have been reached (final_stop = 0) [65]. The trial 
should be designed such that this probability is small. 
Often this probability can be minimised by the choice of 
decision threshold [11]. The probability of a flip-flop can 
be obtained using the mean value of the flipflop variable 
in the output.

Estimated treatment effects (is the model doing its 
job?)  A final output that may be of interest is the esti-
mated treatment effect(s) and the confidence intervals 
from the final analysis or at the interim analysis if the trial 
stops at the interim. This output can be useful to check 
model bias and to ensure that these quantities reflect the 
true values we used in the simulation.

Outputs from PIMS
In the PIMS trial, the proportion of trials that conclude 
the intervention is superior to control in the null scenario 
(i.e., type I error) is 0.043 (Table 4). This reflects the alpha 
value (type 1 error) for the final analysis that was used 
in the modified sample size calculation (alpha = 0.045). 
The probability of trial success under the ‘as powered’ 
scenario is 0.8 (Table  2), which reflects the 80% power 
obtained for this treatment effect in the modified sample 

size calculation. The probability of the trial stopping at 
the interim analysis for efficacy in the ‘as powered’ sce-
nario is 0.13 (Table  2). Under this scenario, the average 
sample size is 545, which is slightly lower than the maxi-
mum sample size of 584 from the modified sample size 
calculation as expected. The mean estimates of the odds 
ratio at the final analysis (final_or), its confidence inter-
val (final_lci, final_uci) and the p-value for the differ-
ence between the two treatment groups (final_p) are 0.39 
[0.19, 0.77], p = 0.04 (Table  2). This is close to the odds 
ratio of 0.375 used in the modified sample size calcula-
tion. The probability of trial flip-flopping is 0.001.

Discussion
Adaptive trials are gaining popularity due to their flexibil-
ity and efficiency [6, 66]. When designing adaptive trials, 
simulation is often required to select the most appropri-
ate design, explore the trial operating characteristics, and 
determine the expected sample size. Simulation requires 
statistical programming skills that involve data genera-
tion, manipulation and generating appropriate summa-
ries. It can be computationally intensive due to the range 
of design parameters and assumptions to be explored 
(e.g., effect sizes, decision criteria, number and timing of 
interim analyses, maximum sample sizes) and the poten-
tially large number of scenarios to explore [32, 33, 59].

In this tutorial, we have shown how to simulate an 
adaptive trial and provided example code in R and Stata. 
For simplicity, we focused on a simple parallel-group 
study with a single interim analysis, where the operating 
characteristics were known so that we can replicate the 
results in the simulations. In practice, the operating char-
acteristics are unknown and cannot be simply derived 
without the use of sometimes complex simulation. The 
simulation process often involves numerous iterations 
of setting the design features/parameters and running 
simulations across a range of potential scenarios [32, 33, 
59]. This is generally through a feedback loop between 
the clinical and the statistical teams, where initially the 
scenarios are defined based on historical or pilot data 
from the clinical team and the inputs to the functions are 
updated based on the output from previous simulation 
runs. This process is repeated until desirable statistical 
properties are achieved across all plausible scenarios and 
risk is assessed for unexpected scenarios, thus determin-
ing an efficient trial design. This tutorial serves as a prac-
tical resource aimed at improving the accessibility of the 
simulation process for both statisticians and clinicians.

The simulation process has been described in a pre-
vious tutorial by Hansen et. al. [32], although this pre-
vious tutorial focussed on the use of BUGS, a Bayesian 
programme language that may not be familiar to most 
statisticians and clinicians, and the implementation of 
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the coding rather than the full design process, includ-
ing review cycles that use the results from successive 
simulations to hone in on an efficient trial design. Our 
tutorial extends previous work by providing implemen-
tation code in R and Stata—two widely used statistical 
packages—and offering structured guidance on present-
ing and interpreting simulation results. This approach is 
intended to enhance accessibility for both statisticians 
and clinicians.

The modular coding structure we have used in our 
tutorial (Fig.  2) also makes our approach appealing, as 
it makes it easy to troubleshoot and modify aspects of 
the code without having to amend the full code. It also 
provides the flexibility of exploring many scenarios and 
design parameters using the same set of building blocks. 
When conducting simulations for guiding study plan-
ning, the code should be written in a way that can be 
used and modified for multiple scenarios and design 
characteristics efficiently. It is also important to ensure 
computational efficiency as simulating complex adaptive 
designs are much more time consuming than standard 
trials. If you have access to multiple Central Processing 
Units (CPUs), efficiency can be improved by running sev-
eral R sessions in parallel. We have provided an example 
of the use of parallel processing for the simulation in the 
hope of improving computational efficiency within the 
supplementary materials.

When simulating data for a particular trial design, 
we recommend starting by simulating a single trial and 
exploring the results to identify any errors in the codes, 
and whether the desired results are stored appropriately. 
As a second step, multiple trials should be simulated 
initially simulating 5–10 trials to check the summaries 
across the simulated trials, before simulating a large 
number (over 1000) of trials. This staged process ensures 
that once a large number of simulations are being run, 
the analyst has confidence in the results. The output from 
a single trial can also be used as a training tool for Data 
Safety and Monitoring Committees (DSMC’s), especially 
when the trial is complex. A review of the interim results 
from selected trial simulations can also provide good 
examples to the DSMC on what may happen during the 
trial.

In this tutorial, we illustrated the simulation process 
and code using the PIMS trial, however, these build-
ing blocks can be adapted and expanded for other stud-
ies. We have included R code within the manuscript and 
equivalent Stata code can be found in the supplementary 
material. In practice, designing an adaptive trial is often 
more complicated than the example presented here, and 
the features of the design will need to be incorporated 
into the simulation code.

Conclusion
Trial simulation is typically required for  resource plan-
ning  for adaptive designs, which must be tailored to 
the  research questions, features and requirements of 
the trial at hand. In this tutorial, we provide researchers 
with the building blocks to conduct such simulations that 
are accessible to statisticians and clinical trialists and can 
be tailored to suit their study needs.
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