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Abstract

Background The demand for adaptive trial designs is growing because of their flexibility and the potential

for efficiency gains over traditional fixed designs. Adaptive trials allow planned modifications to the design based
on accumulating data. Simulation is imperative in designing adaptive trials because analytical power formulae
cannot account for data-driven adaptations. Despite their popularity, the uptake of adaptive trials has been slowed
by the lack of expertise and availability of training resources.

Methods In this tutorial, we demonstrate how to simulate data from a simple adaptive trial with a single interim
analysis, summarise the simulations, and use these results to balance the type | error and power to inform the study
design and to determine the expected sample size. The simulation code, based on a real trial in hyponatraemia in chil-
dren, is provided in both R and Stata programming languages. The code is written in modules to improve compre-
hensibility and enable simple changes to generate a range of adaptive designs.

Discussion When using simulation to design an adaptive trial, the simulations must be tailored to the unique design
requirements of the trial at hand. This tutorial provides a foundational framework designed to make the simulation
process more accessible to both statisticians and clinicians.
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Introduction

Adaptive trial designs are becoming increasingly impor-
tant in medical research as they allow for prospectively
planned modifications to one or more aspects of an ongo-
ing clinical trial based on accumulating data, without sac-
rificing the trial validity and integrity [1-7]. The demand
for these designs is growing because they are flexible and
can provide efficiency gains over conventional designs,
often in terms of cost or time [1, 3, 6, 8]. This flexibility
is particularly beneficial in areas such as infectious dis-
eases like COVID-19, oncology and rare diseases, where
patient populations are small, and treatment effects need
to be assessed rapidly [5, 9, 10]. The most common pre-
planned modifications are changes to the sample size
to declare treatment efficacy or futility (early stopping),
ceasing randomisation to futile treatment arms (arm
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dropping), and modifying the allocation probabilities
to each treatment arm (adaptive randomisation) [5, 6].
These modifications can improve resource efficiency if
fewer participants receive inferior treatment/s, or if the
trial requires fewer participants overall when compared
with a traditional fixed design [6]. The group sequential
design is an example of an adaptive design that incor-
porates multiple planned interim analyses, with pre-
specified rules for early stopping [11]. A more complex
example is the platform design, where multiple treat-
ments are evaluated simultaneously, across a number
of participant subgroups, under a single core protocol
[12-15]. Platform designs may have the benefit of using
the same control group across multiple research ques-
tions and the ability to add new interventions as funds or
supplies become available, but require careful planning
around adaptation criteria and analysis, and more com-
plex statistical modelling to account for non-concurrent
controls [16, 17].

Despite their advantages and popularity, the uptake of
adaptive designs has been slow amongst clinical trial-
ists. This may be due to the practical challenges in their
design and implementation, poor access to design exper-
tise, reservations about acceptance by regulatory authori-
ties, stakeholders and funders, and the complexity of
interpreting the results [2, 5, 6].

Adaptive designs can use either frequentist or Bayesian
methods for design, inference, and decision making (or a
combination thereof) [6, 11, 18]. In a frequentist design,
the decision to stop the trial early for efficacy or futility is
typically made by comparing the p-value for a treatment
effect, calculated within a hypothesis testing framework,
against pre-defined stopping boundaries [18]. For exam-
ple, with a frequentist design the trial could be stopped
for efficacy if the treatment effect p-value at an interim
analysis is less than 0.005, a pre-defined threshold cho-
sen to control the false positive rate (a, the probability of
rejecting the null hypothesis when there is truly no differ-
ence between the treatment arms) [18—-21]. In a Bayesian
design, these decisions are typically guided by the pos-
terior probability of clinically relevant treatment effects,
e.g., for superiority this may be the probability that the
relative risk is less than one [18]. For example, the trial
could be stopped for efficacy if the posterior probabil-
ity of treatment being superior to the control is greater
than 0.95, where the pre-defined threshold is usually
chosen to control the frequentist false positive rate [22].
Although type I error control is not formally required
in a Bayesian design, it is common to report frequentist
operating characteristics in these designs, particularly if
the trial aims to satisfy regulatory requirements [6, 18,
23-27]. Therefore, most Bayesian adaptive designs are a
hybrid of frequentist and Bayesian methods as they are
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designed based on frequentist operating characteristics
such as power and type I error, but the interim analyses
and adaptation criteria are based on Bayesian inference
and decision rules [6, 28—31].

For simple adaptive designs, such as group sequential
designs, established frequentist formulae can be used to
determine the operating characteristics, such as power
and type I error or the required sample size. However,
many adaptive trials require computer simulation to
estimate the operating characteristics and identify an
efficient trial design. The operating characteristics will
depend on the clinical phase of the trial and the degree of
risk acceptable to the investigator, sponsor, and/or regu-
lator, in addition to implementation feasibility [6, 32—35].
Simulation studies are widely used in statistics to evaluate
and understand the performance of statistical methods
[36, 37]. More recently, simulation has become pivotal in
the design of innovative clinical trials [7, 38—40]. Simu-
lation involves generating virtual (i.e., computer gener-
ated and hypothetical) trial data under different assumed
clinical effects for the treatment and control arms, often
referred to as scenarios [32]. Data for thousands of ‘vir-
tual trials’ are generated and analysed and operating
characteristics such as the power, type I error and sample
size are summarised for each scenario. These scenarios
can incorporate various design features such as the tim-
ing and number of interim analyses, the decision rules for
trial adaptations, and the number of treatment arms. Set-
ting these design features usually happens via an iterative
process, where results from a growing number of scenar-
ios are discussed amongst the statisticians and clinicians
and the design features are updated for the next batch of
simulations; a cycle that continues until acceptable oper-
ating characteristics are achieved. This iterative process
facilitates the communication of important trial deci-
sions, which in turn builds confidence in the design and
analysis prior to recruiting the first participant [33, 35].

A range of software exists for conducting simulations
for adaptive trials including stand-alone software (e.g.,
FACTS [41], ADDPLAN [42] and EAST [43]), packages
within existing software such as R [44] (e.g., gsDesign
[45], bayesCT [46], MAMS [47], asd [48], rpact [49]) and
Stata [50] (e.g., nstage [51]), online trial simulators (e.g.
HECT [52]) and custom written code that is sometimes
available from the addendums to publications [34, 35,
53-55]. However, some software are limited in the avail-
ability of design options, while others may overwhelm
the users with their availability of a wide range of design
features [34]. Owing to the limited capabilities or flexibil-
ity and the complexity of the available software, experi-
enced programmers often find it more efficient to write
their own code [34]. This also offers the flexibility to deal
with the unique nature of the wide variety of adaptive
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designs that may be used. However, there is currently a
lack of guidance on developing code for conducting sim-
ulations, and on the general process for how these simu-
lations are used to guide the trial design, although this
approach may be unfamiliar to most clinicians and trial
methodologists.

The aim of this tutorial is to provide a step-by-step
guide on how to write code to simulate trial data and
how to interpret the output for a range of scenarios to
inform the design of a simple adaptive trial with a single
interim analysis. This process will be useful to both stat-
isticians and clinical trialists wishing to implement adap-
tive designs. We provide the simulation code in both R
(within the main text) and Stata (in the supplementary
material) using a modular coding structure to enhance
comprehensibility and facilitate modifications to a range
of adaptive designs. The provided code can serve as a
foundation for generating simulations for any trial. How-
ever, it will need to be adapted to the specific design fea-
tures of the trial—for example, by modifying parameters
such as recruitment rate, allocation ratios, and stopping
rule. We focus our attention on a frequentist example,
but the code could be adapted to incorporate Bayesian
decision making. We illustrate the simulation and design
process using a real-world example of the Paediatric
Intravenous Maintenance Solution in reducing the risk of
hyponatraemia in children in hospital (PIMS) trial, pub-
lished previously [56]. Although there were no adaptive
elements in the original trial, we assume in this tutorial
that the trial included a single interim analysis to illus-
trate the simulation and design processes.

We begin by providing details of the PIMS trial in sec-
tion. “Illustrative example: the PIMS trial”. In section “The
simulation process’;, we outline the simulation process
and explain the code required to generate the simula-
tions. We use a modular structure and introduce subrou-
tines or functions for generating the different aspects of
the trial data, which we call ‘building blocks’ The building
blocks are combined to produce a trial simulation that
is run many times under a number of clinically relevant
scenarios. In the section “Simulation outputs’, we discuss
the outputs of the simulation and how these should be
summarised and interpreted. We conclude with a discus-
sion on balancing the design options against the inves-
tigator/sponsor/regulator risk strategies in the Section
‘Discussion’

lllustrative example: the PIMS trial

Overview of the PIMS trial

The PIMS trial was a two-arm, parallel-group, ran-
domised, double blind trial conducted at the Royal
Children’s Hospital, Melbourne, Australia, to deter-
mine whether the use of a fluid solution with a higher
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sodium concentration reduced the risk of hyponatrae-
mia compared with the use of a hypotonic solution.
Participants were children aged 3 months to 18 years
admitted to The Royal Children’s Hospital’s emergency
department and presurgical wards, who needed intra-
venous maintenance hydration for 6 h or longer. Six
hundred ninety participants were randomised at a 1:1
ratio to either isotonic intravenous fluid containing 140
mmol/L of sodium (Nal40) or hypotonic fluid contain-
ing 77 mmol/L of sodium (Na77) for 72 h or until their
intravenous fluid rate decreased to lower than 50% of
the standard maintenance rate (50-150% of the daily
volume recommended by [57]). Randomisation was
stratified by levels of baseline sodium concentrations
(Low; <135 mmol/L, Normal; 135-145 mmol/L and
High; > 145 mmol/L). The primary outcome was occur-
rence of hyponatraemia (defined as serum sodium con-
centration < 135 mmol/L with a decrease of at least 3
mmol/L from baseline) during the treatment period.
A frequentist fixed trial design sample size was cal-
culated, assuming 10% of the participants developed
hyponatraemia in the Na77 group by 72 h, producing
a total sample size of n=640 (320 per arm) to provide
80% power with a 2-tailed 0.05 significance level to
detect an absolute risk difference of 6% (calculated in
nQuery [58] allowing for a continuity correction). An
additional 25 participants were recruited in each arm to
allow for missing data in the primary outcome, which
was not incorporated into the original sample size cal-
culation given the short time frame for the outcome.

In the original study, there were no planned interim
analyses. For illustrative purposes in this tutorial, we
assume that they planned to conduct a single interim
analysis once half of the expected outcome events have
occurred. At the interim analysis, we plan to (conserva-
tively) declare efficacy if the p-value is less than 0.005.
Using the traditional alpha spending framework, efficacy
is declared at the final analysis if the p-value is less than
or equal to 0.045. Given this simple design, the sample
size frequentist re-calculation is #=584 (292 per arm)
to provide 80% power with a 2-tailed 0.045 significance
level at the final analysis based on the Pearson chi-square
test, to detect an absolute risk difference of 6% (equiva-
lent to an odds ratio of 0.375). Note this is different to the
original sample size calculation that used a 2-tailed 0.05
significance level. We use the design characteristics in
the modified PIMS trial (with a single interim) and gen-
erate the trial data using simulation to demonstrate the
expected power and sample size. Although simulation is
not needed to determine the operating characteristics for
this study design, we use it as an example so that we can
check the results obtained from our formulaic computa-
tion above.
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Simplifying assumptions
We made the following simplifying assumptions regard-
ing the PIMS trial:

1. There was no loss to follow-up.

2. All sites would be active simultaneously and that
the rate of recruitment would be constant, taking
approximately 928 days, based on the recruitment
rate in PIMS.

3. The outcome was available immediately (rather than
at 72 h).

4. A single interim analysis would take place once
half of the expected cases of hyponatraemia have
occurred (20 cases).

The key features of the (modified) PIMS study design
are outlined in Fig. 1.

The simulation process

There are many design features to consider when plan-
ning an adaptive trial. The major considerations are the
(fixed or varying) randomisation probabilities, the num-
ber and timing of interim analyses, and the decision
criteria. Simulation over a range of scenarios ensures
an efficient design is selected that answers the key
study question(s) and balances the attitude to risk [32,
33]. Setting these design features should be an iterative
procedure between clinicians and statisticians. Data
for thousands of trials are simulated for a number of
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different scenarios (reflecting pre-determined design
characteristics that align with decision points and a range
of clinical effect sizes and direction of effect). It is advis-
able that some of the scenarios should be more extreme
to determine how the trial adaptations would respond to
unanticipated intervention effects. The results from these
simulations are aggregated and summarised to estimate
the operating characteristics under each scenario (see
section “Simulation outputs”) and should be discussed
with the clinical team [32, 33, 59, 60]. Once an initial set
of simulation results has been obtained, the design char-
acteristics may require adjustment, e.g., to increase the
power or reduce the type I error. This process is repeated
until an appropriate design with desired characteristics
(such as 80% power, 5% type I error and feasible expected
sample size meaningfully lower than the fixed design)
has been identified. The scenarios considered should be
discussed with the clinical experts and should contain
a mixture of plausible and extreme scenarios reflecting
various clinical effects, to provide a good understanding
of how the operating characteristics change with varying
treatment effects (for example different response/event
rates or mean outcome in each treatment arm). This iter-
ative procedure is outlined in Fig. 2.

When programming the simulations, it is helpful to
break each trial into manageable chunks or modules
that represent the stages of a trial [32]. For example,
we start by generating the randomisation list, followed
by recruiting participants, and then we follow them up

1
2
3. Binary outcome
4

b. Power: 80%

6. Decision criteria:

Main features of the simplified PIMS trial

Two parallel treatment groups
Blocked randomisation (block size=4)

Maximum sample size: 584
a. Significance level at final analysis: 0.045 (two-sided)

5. Single interim once there has been 20 events

a. Interim — For success if p<0.005
b. Final — For success if p<0.045
7. Constant recruitment over 928 days
8. Outcome measured immediately (no dropouts)

Fig. 1 PIMS trial overview
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runTrial()
. i Simulate trial data Analyse the » Store Derive
Specify Fhe g > trial data > Store ltthe simulations VE» summary > operating
scenario simTrialData() analyseData() resufts done? results characteristics

Simulate complete trial dataset including the
outcome data

>simRandomisation()
Randomise participants

»simAccrual()
Generate participant accrual times

simInterimData()
Generate interim data

No

| Repeat for many simulations |

| Repeat for several scenarios |

Fig. 2 Simulation workflow and the modular structure of simulation building blocks

and collect outcome data either at visits or at the end of
the trial period, and then we analyse the data. We refer
to the subroutines or functions that generate each stage
of the trial as ‘building blocks. This modular approach
makes it easy to navigate through the code, enabling
convenient troubleshooting, re-use and development.
The code for simulation also needs to be flexible to be
able to be updated with the changing trial design, as we
typically want to compare multiple candidate designs
with the aim of identifying an efficient design [32].
For example, a common aim of simulation is to deter-
mine the decision criteria to declare efficacy/success
or futility/lack-of-benefit of the treatment(s) or trial at
interim(s) and at final analysis.

In this tutorial, we generate and save the complete
trial data up to the maximum recruitment and then
assess the decision criteria at the interim analysis
(using the available data) and the final analysis (using
all of the data). The post-processing of the interim data
means we can evaluate different decision criteria (e.g.,
success/futility thresholds) easily without generating
the entire dataset repeatedly, provided that we have
sufficient computational storage. The alternative is
to assess the decision criteria once sufficient data has
been generated for each interim and either continue or
stop data generation depending on whether the deci-
sion threshold(s) is met. The latter approach is compu-
tationally inefficient when evaluating different decision
criteria; however, it may still be needed to assess the
operating characteristics of some designs such as in
response adaptive randomisation [61]. Figure 2 shows
a schematic of our simulation process. In the follow-
ing sections, we illustrate the simulation process in R;

equivalent Stata code is presented in the supplementary
material.

Building block 1: randomisation

The first step is to simulate the treatment assignment for
the trial participants up to the maximum trial size. This
may be via simple randomisation, blocked randomisa-
tion, stratified randomisation or more complex dynamic
approaches such as minimisation [62-64]. We will focus
on the most common method, block randomisation,
which was employed in the PIMS trial.

Let # be the maximum sample size of a simulated
trial, which is typically the sample size for which the
study is powered to identify a clinically meaningful
effect size (n =584 in PIMS trial; see section “Illustra-
tive example: the PIMS trial”) at the final analysis but
is more commonly the feasible recruitment target over
the trial recruitment period. The ‘simRandomisation’
function below generates the treatment arm alloca-
tion for “ each participant in the trial. In the PIMS trial,
the participants are randomised using a 1:1 allocation
ratio with block randomisation using block sizes of 4.
To reflect this, we first generate blocks of size 4 (block:
1 to 4) and then a treatment indicator (¢rt: coded as 0
for control, i.e. Na77 group, and 1 for the Nal40 group)
such that two participants are allocated to each treat-
ment arm within each block. Next, a vector of random
numbers is generated from a uniform distribution
between 0 and 1, and the observations are ordered by
these random numbers within each block. This deter-
mines the order of treatment assignments within the
block and results in a sequential list of treatment allo-
cations for consecutively recruited participants in the
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trial. The input for this function is the trial maximum
sample size (). For simplicity, the allocation ratio of 1:1
and block size of 4 have been coded within the func-
tion. Alternatively, one could extend the function to
allow the block size and the allocation probabilities to
vary by including these as input variables. The output
from this function is an R dataframe (dataset) with par-
ticipant ID (I:n) and the treatment allocation (0 or 1)
for each of the n participants.

simRandomisation <- function(n)

block <- rep(seq(1:n), each = 4, length.out = n)

trt <- rep(0:1, length.out = n)

random <- runif(n)

data <- data.frame(block, trt, random)

data <- data[order(data$block, dataSrandom),]

data$obs no <- 1:n
data <- data[,c('obs_no', 'trt") ]

return(data)
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Building block 2: simulate trial recruitment

The second step is to simulate each participant’s time
of recruitment. Generating the participant accrual
times should be based on a plausible recruitment rate
(in days, weeks or months) across the sites. One option
is to assume that participant accrual occurs at a con-
stant rate over time from study commencement. More
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realistically, sites commence at different times and
recruitment may ramp-up until it reaches a constant
rate at which it remains until recruitment is complete.
Some trials may also experience a ramp-down phase as
the trial nears the end of recruitment. When simulat-
ing participant accrual, it is important to build in some
variability to the recruitment process as this may affect
the operating characteristics.

Participant accrual times can be generated using the
function ‘simAccrual. In the code below, we assume
that participant accrual is constant over time and would
take 928 days. The code generates n (the maximum
sample size) random numbers from a uniform distribu-
tion between 0 and 1 and multiplies each by the length
of the recruitment period (e.g., recruit_period: 928 days
in the PIMS trial). The inputs to this function are the
trial maximum sample size (#) and the length of the
recruitment period (recruit_period); the output is a vec-
tor of the ordered accrual times for the n participants
(accrual_time).

simAccrual <- function(n, recruit_period)
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time-to-event variable, then data can be simulated from
either the exponential or Weibull distribution.

In this tutorial, data are simulated using the ‘simTri-
alData’ function below, which has nested calls to the
first two building blocks (‘simRandomisation’ and ‘sim-
Accrual’). In the PIMS trial, the outcome (hyponatrae-
mia by 72 h) is binary, and we assume that it is available
for all participants immediately, hence we simulated
it using a binomial distribution, with different event
probabilities depending on whether the participant is
allocated to the Na77 or Nal40 arm (as defined in the
scenarios). We define p as the vector of event prob-
abilities for the two arms. Notice that the treatment
allocation (¢rt) is coded as 0 for control (Na77) and 1
for treatment (Nal40), therefore, when the outcome is
generated, the rbinom function selects, the probability
in vector position 0+ 1=1 for control and vector posi-

accrual_time <- round(runif(n) * recruit_period + 0.5)

accrual time <- sort(accrual_time)

return(accrual time)

——

Building block 3: generate participant outcomes

The third step is to simulate the participant outcomes
under a specific scenario. Participant outcomes should
be generated from the relevant probability distribu-
tions based on the outcome variable. For example, if
the outcome is a binary variable (i.e., coded as 0 or 1),
data can be simulated from a binomial distribution; if
the outcome is a continuous variable, data can be simu-
lated from a normal distribution; and if the outcome is a

tion 1+1=2 for treatment from vector p. The input to
the ‘simTrialData’ function is the maximum sample
size (n), the length of the recruitment period (recruit_
period) and the vector of event probabilities (p), which
will depend on the scenario under consideration. The
output is a dataset for a single trial with # rows (one
for each participant) and 4 columns representing par-
ticipant ID (obs_no), randomised treatment allocation
(trt), accrual time (accrual_time) and outcome (event).
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simTrialData <- function(n, recruit_period, p)

data <- simRandomisation(n)
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data$accrual time <- simAccrual(n, recruit_period)

data$event <- rbinom(n, 1, p[data$trt+1])

return(data)

Building block 4: identify the data available at the interim
analysis
For trials that include pre-planned interim analy-
ses, a fourth step is needed to identify and extract the
data available at the time of each interim analysis. This
requires identifying participants with outcomes available
at the time of the interim analysis, based on their recruit-
ment time and time to outcome, and extracting these
data. When planning if and when to conduct an interim
analysis, it is important to consider the time frame of the
outcome relative to the recruitment period. For example,
some, but not all, outcome data must be available prior
to the first interim analysis. In addition, the maximum
recruitment target should not be met prior to the sched-
uled interim analyses. Trials with a short recruitment
period (e.g., weeks) relative to the time to outcome (e.g.,
years) are generally unsuitable for interim analyses.

The data available for an interim analysis can be identi-
fied using the function ‘simlInterimData’ In the code, we
assume that the outcome is available immediately after

recruitment and the time of the interim analysis is when
a pre-determined number of events (cases of hyponatrae-
mia; events_at_interim =20 events) have occurred. Since
the data are ordered by participant recruitment times
(see section ‘Building block 2: simulate trial recruit-
ment’), we can compute the cumulative number of events
(cum_events) using a running total of the column con-
taining the outcome data and the participant ID (0bs_no)
at which 20 events are accumulated (i.e., when cum_
events=20) indicates the planned time of our interim
analysis (interim_ind). In this example, as there is no time
lag between recruitment and outcome assessment, the
outcomes at the interim (event_interim: 0 or 1) would be
the same as the outcomes at the final timepoint (event)
for participants included in the interim analysis (i.e., for
observations where obs_no < =interim_ind).

The input to this function is the simulated trial data-
set (data) and the number of events triggering the
interim analysis (events_at_interim) and the output is
the trial dataset with additional columns for the data
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included in the interim analysis (includes cum_events,
interim_ind, event_interim). Note that the event_
interim variable has missing values for all the par-
ticipants recruited after the interim timepoint. These
participants will be excluded from the interim analysis
(see section ‘Building block 5: analyse the trial data’).
Alternatively, the user may choose to only extract the
data up to the interim timepoint and output it as a sep-
arate truncated dataset (data_interim; shown within
the comments of code below) and then use this data-
set as an input to the interim analysis function (section
‘Building block 5: analyse the trial data’). The ‘siminter-
imData’ function can be modified to reflect multiple
interims performed when a fixed number of new par-
ticipants have accrued (e.g., every 20) and to allow a
lag time between recruitment and outcome assessment
(e.g., outcome at 2 weeks).
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Building block 5: analyse the trial data

The fifth and final step is to conduct the analysis of the
trial data. This function is generic and can be used for
the analysis at an interim and at the end of the study.
Generally, only the primary outcome is analysed to
compare the treatments against the control, based on
participants with available data up to that timepoint.
The test statistics are evaluated against decision crite-
ria to determine which treatment arms will continue
to have new participants assigned to them, which
treatment arms will have no further new assignments
(i.e., arm dropped at interim), and whether the trial
has reached a conclusion that triggers the final analy-
sis (which would include the analysis of all secondary
endpoints). In the modified PIMS trial, whether or not

simInterimData <- function(data, events at interim)

data$cum_events <- cumsum(data$event)

data$interim_ind <- dataSobs no[min(which(dataScum_events == events_at interim))]

data$event_interim <- with(data, ifelse(obs_no<= interim_ind, event, NA))

return(data)
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a simulated trial would have stopped recruitment (due
to superiority of the treatment arm over control) at an
interim analysis is assessed by comparing the test sta-
tistics against the pre-defined stopping boundaries,
i.e., evaluating whether the interim p-value is less than
0.005. Some quantities that can be useful to output
from the analysis are:

1. Whether the trial would have stopped before maxi-
mum recruitment at each interim analysis

2. Point estimate and confidence interval for the treat-
ment effect (for example, odds ratio or relative risk)
at the final analysis (which may be at the interim
timepoint if the study was stopped early).

3. The sample size at the time the trial was stopped
(including when maximum recruitment was
reached).

4. Whether the study would have found evidence of
clinically relevant treatment effects or if the trial was
inconclusive.

The function ‘analyseData’ can be used to analyse
the data for each trial at each scheduled analysis and
evaluate decision criteria for adaptations. It calculates
the test statistic using a statistical model (in the PIMS
trial, it is a logistic regression model) for the statistical
hypothesis being explored, e.g., whether treatment is
superior to control. It then compares the test statistics
against the pre-defined decision threshold and deter-
mines whether the criterion for stopping recruitment
at the interim timepoint has been met, in addition to
whether the trial conclusion is reached before maxi-
mum recruitment. The results from each analysis, such
as the estimate of the effect size and associated confi-
dence interval and whether decision thresholds are met
at interim(s) and final analysis, are saved as the output.

Specifically, the following steps are carried out in the
‘analyseData’ function:

1. Compute the proportion of participants with an
event in the control (peventsO) and treatment
(peventsl) arms at maximum recruitment (end of the
trial) or at the interim if the trial stopped early.

2. Conduct a logistic regression to compare outcomes
between the treatment and control arms at the
interim analysis.
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3. Assess the decision criteria at the interim time point,
i.e., is the p-value for the log odds ratio for treatment
compared to control (interim_p) less than the deci-
sion threshold at the interim (alpha_interim). If true,
then stop recruitment to the trial at the interim and
declare efficacy/success (i.e., interim_stop=1), other-
wise continue recruitment.

4. Conduct a logistic regression to compare outcomes
between the treatment and control arms at the final
analysis.

5. Assess the decision criteria at the final analysis and
declare efficacy/success if the p-value for the log odds
ratio for treatment compared to control (final_p) is
less than the decision threshold at the final analysis
(alpha_final), otherwise declare futility.

6. Record the trial conclusion in the variable final_stop,
where final_stop=1 if the treatment was determined
to be efficacious compared to control, or final_
stop =0 otherwise.

The inputs to this function are the simulated data-
set from ‘siminterimData’ (data) and the decision
thresholds at each time point (alpha_interim and
alpha_final). The decision thresholds are usually cho-
sen by simulation to control the false-positive error and
should be pre-specified in the trial protocol. Users may
be interested in exploring different thresholds as part
of the simulation exercise. The output is a summary of
the results from the interim and final analyses (results),
including the number and proportion of events in each
treatment arm (nevents0, neventsl, peventsO, peventsl),
the sample size (sample_size: which is either the num-
ber of participants recruited at the interim if the trial
stopped early or the maximum sample size #n, other-
wise), the time of the interim (interim_time), the effect
sizes (odds ratios) and confidence intervals at the
interim and at the final analysis (interim_or, interim_Ici,
interim_uci, final_or, final_lci, final_uci), the p-values
at the interim and final analysis (interim_p, final_p),
whether the trial reached an efficacy conclusion at the
interim and final time points (interim_stop, final_stop),
whether the trial was conclusive (stop: 1, if trial met the
decision threshold at the interim or final analysis, or
0, otherwise) and the probability of trial flip-flopping
(flipflop: 1, if the trial met the decision threshold at the
interim but not at the final analysis, or 0, otherwise).
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Simulating a single trial
e o The building blocks above (functions in sections ‘Build-
analyseData <- function(data, alpha_interim, alpha_final) . .. . .
‘ ing block 3: generate participant outcomes, ‘Building

{

events < sum(ataSevent{datant — 0) block 4: identify the data available at the interim analy-
nevents] <- sum(dataSevent{datasiut — 11) sis, to ‘Building block 5: analyse the trial data’) can be
S put together to conduct the simulations for a single

pevents] <- neventsl/sum(data$trt = 1)

trial. We begin by simulating a single trial which assists
in debugging the code and identifying whether all rel-
doaSevent i < fctordsaSevent interimy evant results have been captured. We define a number
of global parameters (which represent the simulation
confint < confini(modellogi_in) inputs) described below, and then sequentially run each
step using the ‘runTrial’ function.

modellogit_int <- glm(event_interim ~ trt, data = data, family = "binomial")

interim_or <- exp(coef(modellogit_int)["trt"])

interim_lci <- exp(conf_int["trt", "2.5 %"])

interim_uci <- exp(conf_int["trt", "97.5 %"

interim_p <~ coef(summary(modellogit_int))["trt", "Pr(>[z))"] InPUts
In order to simulate trial data, we must specify a num-
inerim stop < ifese(interim.p <alpha interim, 1,0) ber of global parameters to use in our simulation.
Below we outline the global parameters we use for the
if(interim_stop i PIMS trial'
nevents0 < sum( data$trt = 0 & lis. interim)])
neventsl <- data$trt = 1 & lis. interim)])
. P ) 1. The random seed to ensure reproducibility of the
pevents] <- neventsl/sum(data$trt == | & !is.na(dataSevent_interim)) data and OUtpUtS.
' 2. The recruitment period, which for the PIMS trial we
assumed to be 928 days.
. . 3. The maximum trial sample size (n = 584 for PIMS
dataSevent <- factor(data$event) R
modellogit <- glm(event ~ trt, data = data, family = "binomial”) trlal)'

conf  <- confint(modellogit)

final_or <- exp(coef(modellogit)["trt"])
final_lci <- exp(confl"trt", "2.5 %"])
final_uci <- exp(conf["trt", "97.5 %"])

final_p <- coef(summary(modellogit))["trt", "Pr(>[z))"]

final_stop <- ifelse(final_p < alpha_final, 1, 0)

stop <- ifelse(interim_stop == 1, interim_stop, final_stop)

iffinterim_stop — 1){
sample_size <- unique(dataSinterim_ind)
} else {

sample_size <- nrow(data)

flipflop <- ifelse(interim_stop == 1 & final_stop == 0, 1, 0)

results  <- data.frame(nevents0, nevents1,
pevents0, pevents],
sample._size
interim_time = unique(dataSinterim_ind),
interim_or, interim_lci, interim_uci, interim_p,
interim_stop,
final_or, final_lci, final_uci, final_p,
final_stop, stop, flipflop)

return(results)

4. The number of events required to trigger an interim
analysis (20 cases of hyponatraemia in PIMS trial).

5. The proportion with the event in the treatment and
control arms. This is expressed as a vector, where the
values depend on the scenario for which data is being
generated. Initially we set these as p0 = 0.10 and p1 =
0.04 which we denote as the ‘as powered’ scenario.

6. The decision thresholds, which were set to match the
fixed-design sample size calculation, i.e., 0.005 at the
interim and 0.045 at the final analysis (alpha_interim
= 0.005, alpha_final = 0.045).

It is useful to define the input parameters in one place
so that this list can be easily accessed for reference at
any time and can be updated to explore alternative
designs or scenarios. In the PIMS example, we use the
following code to detail the inputs.
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# The random seed to ensure reproducibility
seed <- 48376491
# Recruitment period = Days in 2.5 years. 690 patients in 3 years (365.25*3days)

recruit_period <-365.25*3*584/690

#584 participants:2.5 years(927 days)
# Maximum trial sample size.
n <- 584

# The number of events at the interim: half recruitment (584/2 = 292; 292*(.1+.04)/2=20 eve

nts)

events_at _interim <- 20

#event probabilities

# Event probability in Na77 at 72 hours
p0  <-0.10

# The event probability for Nal40 arm
pl <-0.04

# vector of event probabilities

p  <c(pO,pl)

# Decision thresholds/boundaries (alpha)
# At final analysis

alpha final  <-0.045

# At the interim

alpha_interim <- 0.005
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The function ‘runTrial’ below uses the previously
defined building blocks to simulate data for a single
trial:

1. Building block 3: ‘simTrialData’ simulates the trial
data (calls ‘simRandomisation’ and simAccrual’)

2. Building block 4: ‘siminterimData’ identifies the data
for the interim analysis

3. Building block 5: ‘analyseData’ analyses the trial data

The inputs are the maximum sample size (1), the recruit-
ment period (recruit_period), the vector of event propor-
tions in the treatment arms (p), the number of events to
trigger the interim (events_at_interim) and the decision
thresholds at the interim(s) and final analysis (alpha_
interim and alpha_final, respectively). The output is a list
containing the simulated dataset (data) and the results
from the analyses of interim and final data (results).

runTrial <- function(n, recruit_period, p, events_at_interim, alpha_interim, alpha_final)

(
t

data <- simTrialData(n, recruit_period, p)
data <- simInterimData(data, events_at_interim)

results <- analyseData(data, alpha_interim, alpha_final)
return(list(data = data, results = results))

1
f

This function can be executed to generate the trial
data for a single trial using the following code:

set.seed(seed)

results_single_trial <- runTrial(n, recruit_period, p,
events_at_interim, alpha_interim,
alpha_final)

results_single_trial$Sresults

The output generated from this function is illustrated
in Table 1. The output includes the simulated dataset,
the results from the analyses and the evaluation of the
decision criteria. The results (contained within results_
single_trial$results) includes the variables described in
section ‘Building block 5: analyse the trial data’ (output
from the function ‘analyseData’).

Simulating multiple trials
The ‘runTrial function simulates data for a single trial. How-
ever, a single trial is not representative of what to expect for
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a particular scenario, i.e., some simulated trials will have
more extreme intervention effects than others. It is there-
fore important to simulate many trials for each scenario of
interest to understand how our trial design could plausibly
perform accounting for the variability in the trial. To do this,
we create a function, ‘runMultipleTrials, that repeatedly exe-
cutes the runTrial function and saves the summary for each
trial. Note that we can save all the simulated trials/datasets
(using ‘saveRDS’ in the function below). This may take up a
considerable amount of space depending on the number of
simulations; however, it can be useful if additional summary
measures may be required in the future.

The inputs required for the ‘runMultipleTrials’ func-
tion (in addition to the global parameters) are the ran-
dom seed (seed) and the number of trial data sets to be
simulated (simno). Note that setting the seed once before
running any of these functions will make the results
reproducible. However, in this implementation we have
used seed within the function to make it explicit and part
of the function, so that the code can be executed in iso-
lation. The output of this function is a list containing a
data frame of the results as returned by the ‘analyseData’
function for each of the trial datasets simulated (results_
all), a data frame with the statistical summaries of the
results across all of the simulated trials (results_sum-
mary) and the seeds used for reproducibility (seeds).

runMultipleTrials <- function(simno, seed, n, recruit_period, p,

events_at_interim, alpha_interim, alpha_final)

sceds <- seed + seq(1:simno)

multiple_trials <- lapply(I:simno, function(x) {
set.seed(seeds[x])
y <- runTrial(n, recruit_period, p, events_at_interim, alpha_interim,
alpha_final)
return(y)

D

results <- lapply(multiple_trials, function(x) return(xSresults))
results_all <- do.call(rbind, results)

saveRDS(multiple_trials, file = 'results_multitrials.rds’)

x <- which(apply(results_all, 1, function(x) any(is.na(x))))
if(length(x) > 0){

results_summary <- apply(results_all[-x,], 2, summary)
}else {

results_summary <- apply(results_all,2,summary)
¥
return(list(results_all = results_all,

results_summary = results_summary,

seeds = sceds))



Jayawardana et al. Trials (2025) 26:400

Table 1 The output from a single simulated trial dataset

Variable Description of the variable Output
nevents0 Number of events in the control group 17
nevents1 Number of events in the treatment group 9
peventsO Proportion of events in the control group 0.06
pevents1 Proportion of events in the treatment group 003
sample_size Sample size 584
interim_time Time at the interim (days) 433
interim_or Odds ratio at the interim 081
interim_lci Lower Cl for OR at interim 032
interim_uci Upper Cl for OR at interim 201
interim_p P-value for any difference between treatments 0.66
at the interim analysis
interim_stop Whether the trial would have stopped at the interim 0.00
(based on decision criteria at interim)
final_or Odds ratio at final analysis 0.51
final_lci Lower Cl for odds ratio 0.22
final_uci Upper Cl for odds ratio 1.15
final_p P-value for treatment difference at final analysis 0.11
final_stop Whether the trial is conclusive at final analysis 0.00
stop Whether the trial was conclusive (at the interim oratthe ~ 0.00
final analysis)
flipflop The probability of trial flip-flopping 0.00

The control group (Na77); the treatment group (Na140)

For the PIMS trial, we generated 5000 simulated data-
sets (simno=>5000) for each scenario, which is appropri-
ate for the expected accuracy of the summary measures
across simulations (larger numbers tend to give more
accurate estimates) given the computational burden.
Simulation of more complex trials may need larger num-
bers. Practically, it can be useful to start with a much
smaller number of simulations (e.g., simno=10 or 100) to
ensure that the function is working as expected, before
increasing to a larger number to compare the choice of
design parameters. The ‘runMultipleTrials’ function can
be executed using the code below.

simno <- 5000
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statistical summaries (minimum, 1st quartile, median,
mean, 3rd quartile and maximum) of all of the output
variables in the ‘results’ dataset from the ‘analyseData’
function (see section ‘Building block 5: analyse the trial
data’) across the 5000 simulated trials (e.g., mean sample
size for the 5000 simulated trials).

Simulation outputs

Scenarios

As discussed previously, trial simulation involves evalu-
ating the trial operating characteristics for a range of
different scenarios [59]. Most of these scenarios should
be based on plausible quantities for effect sizes between
treatment arms according to expert opinion and pilot
studies. However, it is important to consider some
extreme scenarios to develop a good understanding of
how the trial might perform if these extreme scenar-
ios arise in practice, such as if effect sizes were much
larger or much smaller than current evidence. For the
PIMS trial, the scenarios that could be considered are
outlined in Table 3. The ‘null’ scenario represents the
scenario where there is no difference in the primary
outcome between Nal40 and the Na77 groups, and the
‘as powered’ scenario represents the scenario used in
the original fixed-design sample size calculation. We
have also considered two ‘extreme’ scenarios where the
treatment effect is smaller and larger than the expected
effect.

To evaluate the trial operating characteristics for
each of the scenarios we use the function ‘runMulti-
pleTrials’ changing the input parameters regarding the
primary outcome. We demonstrated the ‘as powered’
in Section "Simulating multiple trials" above (p0=0.10
for control arm, p1 =0.04 for treatment arm). In Table 4

results multi_trials <- runMultipleTrials(simno, seed, n, recruit_period,

p, events_at interim,

results_ multi_trials$results_summary

The summary output from this function is presented
in Table 2 for the ‘as powered’ scenario. It includes the

alpha_interim, alpha final)

and Supplementary Tables 1 and 2 we present the sum-
mary of the results across 5000 simulated trials for ‘the
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Table 2 A summary of the output from 5,000 simulated trial datasets for the expected treatment effect in PIMS (p0=0.10 for control

arm (Na77), p1=0.04 for treatment arm (Na140))

Variable Description of the variable Minimum Q1 Median Mean Q3 Maximum
nevents0 Number of events in the control group 14 23 28 27 31 49
nevents| Number of events in the treatment group 1 9 11 11 14 24
peventsO Proportion of events in the control group 0.05 009 0.10 0.10 0.11 0.27
pevents] Proportion of events in the treatment group 0.01 0.03 0.04 0.04 0.05 0.08
sample_size  Sample size 129 584 584 545 584 584
interim_time  Time at the interim (days) 116 240 281 284 324 548
interim_or QOdds ratio at the interim 0.04 0.23 0.40 041 0.52 1.95
interim_|ci Lower Cl for OR at interim 0.00 007 014 0.14 019 078
interim_uci Upper Cl for OR at interim 0.21 0.65 1.03 1.06 1.30 5.31
interim_p P-value for any difference between treatments at the interim analysis ~ 0.00 0.01 0.07 0.14 0.17 1.00
interim_stop ~ Whether the trial would have stopped at the interim (based on deci- 0.00 0.00 0.00 0.13 0.00 1.00
sion criteria at interim)
final_or Odds ratio at final analysis 0.06 029 037 039 048 124
final_lci Lower Cl for odds ratio 0.01 013 0.18 0.19 0.24 0.65
final_uci Upper Cl for odds ratio 0.19 058 074 0.77 091 241
final_p P-value for treatment difference at final analysis 0.00 0.00 0.01 0.04 0.03 1.00
final_stop Whether the trial is conclusive at final analysis 0.00 1.00 1.00 0.80 1.00 1.00
stop Whether the trial was conclusive (at the interim or at the final analysis) ~ 0.00 1.00 1.00 0.80 1.00 1.00
flipflop The probability of trial flip-flopping 0.000 0.000  0.000 0.001 0.000 1.000

Q1: 1st quartile; Q3: 3rd quartile. In bold are the quantities discussed in the manuscript. Namely, the average sample size, probability of trial stopping early (at interim),
average of final odds ratio and confidence interval [CI] (lower Cl boundary [LCI], upper Cl boundary [UCI]), p-value, probability of trial success, probability of trial

flipflopping (rounded to 3 decimal places due to small magnitude)

Table 3 Event probabilities across treatment arms for the 4
scenarios considered in the PIMS simulations

Scenario Control (Na77) Intervention
(Na140)

Null 0.10 0.10

As powered 0.10 0.04

Smaller difference 0.10 0.06

Larger difference 0.10 0.03

null hypothesis’ scenario, ‘smaller difference’ scenario
and ‘larger difference’ scenario respectively.

Interpreting the output

Once we have run many simulations per scenario, we
use the summary measures from these scenarios to tell
us about the operating characteristics of the design as
described below. Example code to obtain the operating
characteristics is given in the Supplementary material.

Operating characteristics of interest
Probability of trial success when there is no treatment
difference (type I error) One of the key operating

characteristics is the type I error. The type I error is the
probability of rejecting the null hypothesis (i.e., declar-
ing a trial success or identifying a treatment effect) when
there is no treatment effect. We often aim to control the
type I error to be below 5%. From our simulation out-
puts, the type I error is estimated by the proportion of
trials that conclude as a success (i.e. declared a differ-
ence between treatment arms) in the ‘null hypothesis’
scenario, where there truly was no difference between
the treatment and control arms [11]. The mean value of
the stop variable (whether the trial was conclusive at the
interim or final analysis) across all simulated datasets
under the ‘null hypothesis’ scenario provides an estimate
for the type I error.

Probability of trial success when the intervention is truly
superior (power) Another important operating charac-
teristic to consider is the power of the trial. The power
of the trial to detect a treatment effect is reflected in the
proportion of successful trials (i.e. those that declare a
difference between treatment arms) where there truly is
a difference between the intervention arms. For example,
the power of the trial to detect the treatment effect in the
original sample size calculation of the PIMS trial can be
estimated using the mean value of the stop variable in
the ‘as powered’ scenario. That is, the proportion of trials
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that conclude the treatment arm is superior to the con-
trol arm at the interim or final analysis in the ‘as powered’
scenario.

Probability of stopping at the interim analysis The prob-
ability of the trial stopping at the interim analysis due to
reaching a decision threshold is another operating char-
acteristic of interest. This is calculated from the mean
value of interim_stop variable across simulated trials for
a given scenario.

Mean number of participants per trial The mean sam-
ple size (sample_size) can be used to assess average
reduction in trial size due to the inclusion of interim
analyses. This gives an indication of the usefulness of
the interim analysis(es), if we can save both time and
resources without recruiting further participants or col-
lecting further follow-up data.

Probability of the trial flip-flopping’ The probability of
a ‘flip-flop’ is another characteristic that may be of inter-
est to explore in the simulation output. This occurs when
a given simulated trial is flagged as reaching a decision
threshold at an interim analysis, but the critical value for
declaring a difference at the final analysis is not met. This
is also known as the ‘false stopping probability, where we
would stop the trial at the interim analysis for success or
futility (interim_stop=1); however, if we had continued
the trial until final analysis this decision threshold would
not have been reached (final _stop=0) [65]. The trial
should be designed such that this probability is small.
Often this probability can be minimised by the choice of
decision threshold [11]. The probability of a flip-flop can
be obtained using the mean value of the flipflop variable
in the output.

Estimated treatment effects (is the model doing its
job?) A final output that may be of interest is the esti-
mated treatment effect(s) and the confidence intervals
from the final analysis or at the interim analysis if the trial
stops at the interim. This output can be useful to check
model bias and to ensure that these quantities reflect the
true values we used in the simulation.

Outputs from PIMS

In the PIMS trial, the proportion of trials that conclude
the intervention is superior to control in the null scenario
(i.e., type I error) is 0.043 (Table 4). This reflects the alpha
value (type 1 error) for the final analysis that was used
in the modified sample size calculation (alpha=0.045).
The probability of trial success under the ‘as powered’
scenario is 0.8 (Table 2), which reflects the 80% power
obtained for this treatment effect in the modified sample
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size calculation. The probability of the trial stopping at
the interim analysis for efficacy in the ‘as powered’ sce-
nario is 0.13 (Table 2). Under this scenario, the average
sample size is 545, which is slightly lower than the maxi-
mum sample size of 584 from the modified sample size
calculation as expected. The mean estimates of the odds
ratio at the final analysis (final_or), its confidence inter-
val (final_lci, final_uci) and the p-value for the differ-
ence between the two treatment groups (final_p) are 0.39
[0.19, 0.77], p=0.04 (Table 2). This is close to the odds
ratio of 0.375 used in the modified sample size calcula-
tion. The probability of trial flip-flopping is 0.001.

Discussion

Adaptive trials are gaining popularity due to their flexibil-
ity and efficiency [6, 66]. When designing adaptive trials,
simulation is often required to select the most appropri-
ate design, explore the trial operating characteristics, and
determine the expected sample size. Simulation requires
statistical programming skills that involve data genera-
tion, manipulation and generating appropriate summa-
ries. It can be computationally intensive due to the range
of design parameters and assumptions to be explored
(e.g., effect sizes, decision criteria, number and timing of
interim analyses, maximum sample sizes) and the poten-
tially large number of scenarios to explore [32, 33, 59].

In this tutorial, we have shown how to simulate an
adaptive trial and provided example code in R and Stata.
For simplicity, we focused on a simple parallel-group
study with a single interim analysis, where the operating
characteristics were known so that we can replicate the
results in the simulations. In practice, the operating char-
acteristics are unknown and cannot be simply derived
without the use of sometimes complex simulation. The
simulation process often involves numerous iterations
of setting the design features/parameters and running
simulations across a range of potential scenarios [32, 33,
59]. This is generally through a feedback loop between
the clinical and the statistical teams, where initially the
scenarios are defined based on historical or pilot data
from the clinical team and the inputs to the functions are
updated based on the output from previous simulation
runs. This process is repeated until desirable statistical
properties are achieved across all plausible scenarios and
risk is assessed for unexpected scenarios, thus determin-
ing an efficient trial design. This tutorial serves as a prac-
tical resource aimed at improving the accessibility of the
simulation process for both statisticians and clinicians.

The simulation process has been described in a pre-
vious tutorial by Hansen et. al. [32], although this pre-
vious tutorial focussed on the use of BUGS, a Bayesian
programme language that may not be familiar to most
statisticians and clinicians, and the implementation of
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the coding rather than the full design process, includ-
ing review cycles that use the results from successive
simulations to hone in on an efficient trial design. Our
tutorial extends previous work by providing implemen-
tation code in R and Stata—two widely used statistical
packages—and offering structured guidance on present-
ing and interpreting simulation results. This approach is
intended to enhance accessibility for both statisticians
and clinicians.

The modular coding structure we have used in our
tutorial (Fig. 2) also makes our approach appealing, as
it makes it easy to troubleshoot and modify aspects of
the code without having to amend the full code. It also
provides the flexibility of exploring many scenarios and
design parameters using the same set of building blocks.
When conducting simulations for guiding study plan-
ning, the code should be written in a way that can be
used and modified for multiple scenarios and design
characteristics efficiently. It is also important to ensure
computational efficiency as simulating complex adaptive
designs are much more time consuming than standard
trials. If you have access to multiple Central Processing
Units (CPUs), efficiency can be improved by running sev-
eral R sessions in parallel. We have provided an example
of the use of parallel processing for the simulation in the
hope of improving computational efficiency within the
supplementary materials.

When simulating data for a particular trial design,
we recommend starting by simulating a single trial and
exploring the results to identify any errors in the codes,
and whether the desired results are stored appropriately.
As a second step, multiple trials should be simulated
initially simulating 5-10 trials to check the summaries
across the simulated trials, before simulating a large
number (over 1000) of trials. This staged process ensures
that once a large number of simulations are being run,
the analyst has confidence in the results. The output from
a single trial can also be used as a training tool for Data
Safety and Monitoring Committees (DSMC’s), especially
when the trial is complex. A review of the interim results
from selected trial simulations can also provide good
examples to the DSMC on what may happen during the
trial.

In this tutorial, we illustrated the simulation process
and code using the PIMS trial, however, these build-
ing blocks can be adapted and expanded for other stud-
ies. We have included R code within the manuscript and
equivalent Stata code can be found in the supplementary
material. In practice, designing an adaptive trial is often
more complicated than the example presented here, and
the features of the design will need to be incorporated
into the simulation code.
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Conclusion

Trial simulation is typically required for resource plan-
ning for adaptive designs, which must be tailored to
the research questions, features and requirements of
the trial at hand. In this tutorial, we provide researchers
with the building blocks to conduct such simulations that
are accessible to statisticians and clinical trialists and can
be tailored to suit their study needs.
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