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Using causal directed acyclic graphs

(DAGs) to select patient-important outcomes in
transplantation trials—interventions to treat
polyomavirus infection as an example
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T ransplantation can be life-changing for
those with kidney failure because it im-
proves their overall quality of life and

survival. However, transplantation is not a
cure and comes with complications. With the
advent of improved immunosuppressive ther-
apy and surgical techniques, short-term graft
and patient survival have improved consider-
ably over the past 3 decades. By contrast, im-
provements in longer-term graft and patient
outcomes have been more modest. The key
challenge of transplantation is to optimize graft
function whilst avoiding complications associ-
ated with over-immunosuppression, such as
opportunistic infections and cancers.1 Although
most transplantation centers follow standard
immunosuppression protocols, the agents (and
doses) used are highly dependent on patient
and graft characteristics, clinician preferences,
and drug tolerability. As the treatments used
in post-transplantation care can have both
beneficial and harmful effects, determining the
specific outcomes to be assessed when evalu-
ating alternative treatment strategies is crucial.

BK polyomavirus (BKPyV) infection is an
opportunistic infection that can cause ne-
phropathy, ureteric strictures, premature graft
loss, and return to dialysis following kidney
transplantation.2 Currently, no proven antiviral
treatments exist, and the mainstay of treatment
involves judicious reduction of immunosup-
pression to facilitate immune reconstitution
and viral suppression before the infection
progresses to the point of causing damage to
the allograft. However, reducing immunosup-
pression can trigger acute and subsequently
chronic rejection, which is another cause of
allograft dysfunction or loss. Proposed in-
terventions for BKPyV infection therefore must
be assessed for their effects on the various
outcomes that are important to patients and
key stakeholders.3 These outcomes include (or
are affected by) allograft function, the risk of
opportunistic infection, and allograft loss.4
Intravenous immunoglobulin (IVIG) has
been proposed as a candidate intervention for
the management of BKPyV infection because it
may possess BKPyV-specific neutralizing anti-
bodies.5 Passive immunization with IVIG in the
early post-transplant phase has been associated
with a lower incidence of viremia and BKPyV-
associated nephropathy (BKPyVAN) in high-
risk kidney transplant recipients. IVIG also is
known to have immunomodulatory effects and
may prevent antibody-mediated allograft rejec-
tion following a reduction in immunosuppres-
sion for the management of the viral infection.5

However, trial evidence to support the use of
IVIG in clinical practice is very limited.

Directed acyclic graphs (DAGs) are being
used increasingly to communicate and reason
about the mechanisms that underlie complex
problems in health and other domains. In a
DAG, a node represents a variable (or factor)
relevant to the problem of interest, and an ar-
row (or arc) indicates the presence of a direct
influence of predecessor (or parent) variables
on their child nodes (nodes descending from
other nodes). In a causal DAG, the arcs describe
the mechanistic pathways affecting the proba-
bility of downstream outcomes, which can, in
theory, be intervened upon to change the
probability of that outcome. Causal DAGs are
being used increasingly to aid in the design and
analysis of clinical studies.6,7 They typically
represent the proponent’s understanding of the
problem domain based on scientific reasoning,
knowledge of the literature, and/or data anal-
ysis. They serve as an explicit set of causal as-
sumptions that are open to critique by others.
With an agreed-on causal framework, re-
searchers can identify and reason collectively
when deciphering treatment effects, including
potential mediators and confounders, and
sources of selection or measurement biases.
The construction of a causal DAG may require
collaboration of subject-matter experts with
those with expertise in casual inference.8
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In this editorial, we present how we used a
causal DAG to help us interpret outcomes of a
planned trial involving people with transplant-
associated BKPyV infection. The causal DAG
was created to capture the clinical challenge of
maintaining an acceptable balance between
over- and under-immunosuppression in kidney
transplantation and to identify potential con-
founders and competing risks across the
different pathways. We hope our example il-
lustrates the purpose of constructing causal
DAGs, how best to approach this process, and
its potential value in the design and interpre-
tation of medical research.

Methods
We applied a previously described knowledge
engineering approach8 to create the causal
DAGs. Preliminary DAGs were drafted by the
modeller based on published literature and
consultation with domain experts in
nephrology and infectious diseases. A
knowledge-elicitation survey (see the
Supplementary Methods) was designed and
conducted, followed by a workshop to consol-
idate understanding of the survey responses
and revise the preliminary DAGs. The revised
DAGs were described in written format, which
was reviewed by other domain experts (i.e.,
those who did not participate in the initial
elicitation activities) as a form of validation.
Although our focus was on understanding
causal mechanisms, we allowed some associa-
tions between variables that were not strictly
causal—for example, for predictive variables
that cannot be intervened upon, such as the
patient’s comorbidities prior to transplantation.

To depict the DAGs during the elicitation
sessions and model development process, we
used GeNIe software (https://www.bayesfusion.
com), which is one of several tools that allow
users to construct DAGs, such as DAGitty
(http://www.dagitty.net/) and Netica (https://
www.norsys.com/download.html).

Results
Introduction of the putative causal DAG for

post-transplant BKPyVAN. The thick arrows in
the causal DAG (Figure 1) highlight the pro-
posed predominant pathways; perturbations of
immune function (p6), either increased or
decreased, may increase the risk of allograft
damage, leading to graft dysfunction (p16) via
either immune-mediated acute rejection (p10)
or BKPyVAN (p13). The probability of these
complications is influenced by a range of
3

patient factors (dark blue nodes)—for example,
patients’ adherence to their prescribed immu-
nosuppression (p2) is critical to allograft sur-
vival. The recipients’ sensitization status (p4),
and the degree of human leukocyte antigen
(HLA) matching between the donor graft and
the recipient (p7) may influence the risk of
acute rejection, through their impact on the
immune function and humoral response of the
HLA donor–specific antibodies (p8). In addi-
tion, non-HLA antibodies (p9), such as the
angiotensin type 1 receptor (AT1R) antibodies
and other unknown immune mechanisms, can
also mediate acute rejection. In Supplementary
Table S1, definitions for each variable in the
causal DAGs are provided.

We use the following 3 nodes to capture
separate BKPyV-relevant events: first, latent BK
infection (p11), which has a high seropreva-
lence of 90%; second, reactivation of BKPyV
(p12) due to immunosuppression resulting in
viruria and viremia; and third, viral infiltration
of the allograft (BKPyVAN; prevalence of 3%–

5%).2 Although the mechanisms of allograft
damage are complex, we have categorized
allograft injury into 2 groups—reversible (p14)
and irreversible damage (p15); here, reversible
damage subsequently may become irreversible.
Acute rejection and BKPyV-related events may
cause reversible or irreversible damage, leading
to allograft dysfunction (defined by a signifi-
cant reduction in estimated glomerular filtra-
tion rate [eGFR]). Finally, clinicians’
management responses (illustrated by red
nodes) may affect this causal process directly,
including selection of immunosuppressive
therapy, its dose, the therapeutic response to
acute rejection (p5), and the timing of various
investigations (p18). In this context, latency
suggests those events, or underlying disease
processes (e.g., p10 and p12), that are not
observable and therefore must be inferred us-
ing observable surrogates—for example, the
measured viral load and the eGFR for viral
burden and acute rejection, respectively.

In this putative causal DAG (Figure 1), we
illustrate how the upstream processes can result
in downstream complications, such as
increased risk of mortality (p26) and reduced
quality of life associated with allograft loss and
return to dialysis (indicated by light blue nodes
and brown text). We have highlighted how
symptoms of kidney failure (e.g., fatigue, pain,
lethargy, pruritis; p24) and overall treatment
burden (p21) may influence the overall quality
of life of the recipients (p27).
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Figure 1 | The causal directed acyclic graph (DAG) for BK polyomavirus (BKPyV) infections and allograft
outcomes (the putative [p] DAG). The detailed model structure and the definition for each variable are
provided in Supplementary Table S1. BKPyVAN, BKPyV-associated nephropathy; HLA, human leukocyte
antigen; QoL, quality of life.

ed i to r i a l

630
Defining a multicomponent outcome to eval-
uate a treatment for BKPyVAN. To capture the
trajectory of BKPyV infection, we have devel-
oped a dynamic DAG that describes the evo-
lution of key events (Figure 1) in the
predominant pathways, over both shorter and
longer timeframes (Figure 2). We initialize this
dynamic DAG by describing the baseline (t0)
status of a transplant recipient with respect to
immunosuppressive therapy, immune status,
BKPyV viral load, risk of acute rejection, and
eGFR. Each of these factors informs its own
status in the subsequent time step. Although
interactions among these key factors are repli-
cated from the DAG structure in Figure 1
within each time step (t1 and t2), 2 new arcs
are introduced to capture important feedback
loops between time steps that cannot be
captured in the single–time step DAG. These
arcs represent how BK viral load and the
presence of acute rejection can influence the
clinician’s decision to alter immunosuppres-
sion. Specifically, immunosuppression doses
will be increased if evidence of acute rejection is
Kidney International (2023) 104, 628–633



Figure 2 | A dynamic directed acyclic graph (DAG) that guides selection of valid endpoints in a planned
clinical trial for the evaluation of intravenous immunoglobulin (IVIG) in the management of BK
polyomavirus (BKPyV). Rank 1 indicates the best patient status, and rank 5 indicates the worst. In particular,
rank 5 is defined as death, graft loss, or significant decline in estimated glomerular filtration rate (eGFR); rank
4 is defined as a moderate increase in BKPyV viral load or acute rejection; ranks 3, 2, and 1 are defined as
larger, moderate, and minimal or no reduction in immunosuppression, respectively. In Supplementary
Table S1, we provide details on how each variable in the dynamic DAG is mapped with variables in the
putative DAG (Figure 1). t, time.
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observed; alternatively, immunosuppression
doses will be reduced if high viral loads are
detected. We have included 2 summary vari-
ables to capture changes in eGFR and immu-
nosuppressive therapy between the baseline
and short-term time steps. The short-term risk
of death or graft loss is influenced by both the
absolute eGFR (as a measure of graft function)
and the eGFR rate of decline—that is, the eGFR
slope (t1). Short-term and progressive decline
in kidney function (eGFR slope t1 and eGFR
t2) determine longer-term allograft and patient
survival (death or graft loss t2).

Our objective is to use this causal DAG to
guide the selection of important and valid pa-
tient endpoints for use in the evaluation of
IVIG for the treatment of BKPyV in a clinical-
trial setting. From a pragmatic viewpoint,
endpoints must be measurable (observable)
and must occur (observed) within a relatively
short timeframe (t1), while also allowing
3

inferences to be made regarding long-term
patient-relevant outcomes that are not imme-
diately observable—that is, death or graft loss
within a relevant timeframe, such as 10 years
(t2). We propose these sets of endpoints to be
used to assess the recipient’s status within a
short timeframe, and to compare patient out-
comes between different trial arms.

To address the various possible combina-
tions of the composite measures, outcomes
have been consolidated into a single objective
ranking. In Figure 2, rank 1 indicates the best
patient status, and rank 5 indicates the worst;
then, the worst-ranked endpoint for a patient is
taken to be the overall ranking of their set of
endpoints. We also labelled the causal pathways
depicting how each short-term endpoint (t1) is
assumed to be related to downstream outcomes
of interest (i.e., death or graft loss t2). These
ranks are informed by their causal proximity to
(and therefore presumed influence on) the
631
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longer-term outcomes of interest. For example,
the short-term endpoints of death, graft loss, or
significant decline in eGFR are assessed to be
strongly influential for the long-term out-
comes9 (via dark-red, light-red, and orange
arcs) and are assigned the worst rank (rank 5).
If none of the rank-5 events occurs, then the
short-term events that are most causally prox-
imal to eventual graft loss and death are
assigned rank 4. For example, either a moderate
increase in BK viral load and/or concurrent
acute rejection is likely to increase the risk of
allograft dysfunction (indicated by an eGFR
reduction) and thereby increase the risk of graft
loss and death in the longer term (via light-red
and orange arcs). Moreover, in the absence of
rank-5 and rank-4 events, reduction in
immunosuppression may increase the risk of
subsequent rejection (via orange arcs), leading
to allograft dysfunction. In the case in which
immunosuppression reduction is required to
control the BKPyV viral load, a higher risk of
acute rejection is expected. Therefore, a larger
reduction in immunosuppression is assigned a
higher rank (rank 3) than a lesser reduction
(rank 2). The lowest risk of death or graft loss
in the longer term is expected to occur in
transplant recipients with suppressed BK viral
loads, with minimal or no reduction in
immunosuppression, without evidence of acute
rejection, and without significant short-term
eGFR declines (rank 1).

Discussion
Challenges and opportunities for

implementation. In this editorial, we present
the creation of a causal DAG that offers a
framework for assessing the effects of IVIG for
post-transplant BKPyV viremia. This DAG
informed a 5-point ranked short-term endpoint
to derive inferences about important long-term
outcomes (e.g., graft loss or death) that are
impractical to observe within the trial duration.
The causal DAG was necessarily a simplification
of the problem domain for our specific context,
and it is likely to require modification and
extension before it can be used appropriately for
other purposes.

The proposed causal DAGs are constrained
to variables considered most relevant to our
specific problem domain (managing BKPy-
VAN) and context (clinical trials) based on the
opinions of our group of subject-matter ex-
perts. We acknowledge that a great many
external factors also affect the outcomes of
transplant recipients. In the context of a clinical
trial, randomization is used to ensure that such
factors do not confound the measured treat-
ment effects (i.e., that these unknown or un-
measured factors are balanced across the
interventions). Outside of a trial, the potential
for those factors to confound measured treat-
ment effects needs to be considered, and causal
DAGs provide a coherent strategy for making
such considerations. In other words, our DAGs
do not aim to represent an exhaustive list of
factors that need to be considered for every
context. Rather, publishing causal DAGs such
as ours offers the following: (i) a knowledge
base to facilitate scientific reasoning and debate
when experts hold diverging opinions; (ii) a
framework for extension and adaptation when
other considerations become important—for
example, in studies in which treatments are
observed rather than assigned, to account for
variation in practice across healthcare settings,
or when new medical knowledge and technol-
ogies become available. The knowledge base
can be used to guide data collection, analysis,
and interpretation, inform the design of clinical
studies including trials, and even guide the
development of clinical-decision support
tools.8 Causal DAGs can be extended naturally
to inform quantitative models that aim to
specify and test the strength of the causal effects
depicted in the DAGs; moreover, quantitative
approaches can serve as complementary
methods to explore alternative causal
hypotheses.

In our DAG, almost all key events are
“latent” (for example, graft function); thus,
rendering measurement of the latent status of
interest is difficult. In these situations, observ-
able variables, such as surrogate measures, are
quantified to deduce the values of the latent
variables. Given that the relationship between
the surrogate and the latent event of interest is
not deterministic, a measured treatment effect
on a surrogate endpoint does not equate
necessarily to a clinically meaningful effect on a
latent outcome of interest. A causal DAG is
applied to understand such discrepancies and
inform opportunities to improve the selection
and timing of observable measures (i.e., data
collection). The measurable endpoints (e.g.,
viral load and eGFR) and outcomes of interest
(e.g., BKPyV, acute rejection, and graft func-
tion) are likely to vary dynamically over the
lifecourse of a transplant recipient, and the
strength of any relationship between a long-
term outcome and its short-term surrogate is
expected to diminish with increasing time gap.
Kidney International (2023) 104, 628–633
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The choice of the desired duration of obser-
vation remains uncertain. Selection of the
short-term surrogate endpoints, and deter-
mining when to measure them, involves an
implicit trade-off between trial costs and the
timeliness of evidence, on one hand, and the
certainty that any measured effect will reflect a
clinically meaningful benefit on the other.
Quantitative exploration of these scenarios
through data simulation may promote a more
explicit approach to our assumptions, and
thereby help to address these methodological
challenges and guide trial design.

Finally, integration of patient-reported
endpoints within the causal pathway is
crucial,10 as patient experience and symptom
burden are of primary interest. Valid assess-
ment of these symptoms (or symptom clusters)
is important because it provides guidance that
can be used to evaluate the impact of in-
terventions and inform best practice in clinical
management. One of the limitations in assess-
ing treatment and symptom burden using
patient-reported outcomes is the lack a well-
designed and validated patient-reported
outcomes instrument that is specific to trans-
plantation. Such an instrument will provide
both important insights into the observed ef-
fects in treatment comparisons, and the ability
to detect minimally important differences be-
tween interventions in transplantation trials.
Reliable patient-reported outcome instruments
for collecting relevant and important patient
data are essential elements of quality clinical
care and should be the focus of future research.

Causal inference beyond the context of
polyomavirus, kidney transplantation, and clinical
trials. Although the use of causal inference
framework is attracting attention in the medical
field, the literature has gaps regarding how best
to create causal DAGs, as well as a lack of
protocols to guide their development in a
replicable manner. The task of co-creating a
robust causal DAG can become increasingly
challenging for subject-matter experts and
modellers as the problem domain (and its
associated data) gets more complex. We believe
that the validity of any DAG rests heavily on the
building process itself, the documentation of
this process, and the description of outcome(s).
For example, we highlight the importance of a
3

variable dictionary (Supplementary Table S1),
in which variables and their relationships (i.e.,
nodes and arcs) are explicitly defined and
documented, providing explanations that
cannot be intuited from the DAG itself. This
approach allows the DAG to be challenged by
other domain experts, and it allows the DAG to
serve as a knowledge base that can be updated
with transparency and traceability as the sci-
entific knowledge in a domain advances.
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